
Dual Averaging Method for Online Graph-structured Sparsity
Baojian Zhou

bzhou6@albany.edu
University at Albany, SUNY

Albany, NY, USA

Feng Chen
fchen5@albany.edu

University at Albany, SUNY
Albany, NY, USA

Yiming Ying
yying@albany.edu

University at Albany, SUNY
Albany, NY, USA

ABSTRACT

Online learning algorithms update models via one sample per it-
eration, thus efficient to process large-scale datasets and useful to
detect malicious events for social benefits, such as disease outbreak
and traffic congestion on the fly. However, existing algorithms for
graph-structured models focused on the offline setting and the least
square loss, incapable for online setting, while methods designed for
online setting cannot be directly applied to the problem of complex
(usually non-convex) graph-structured sparsity model. To address
these limitations, in this paper we propose a new algorithm for
graph-structured sparsity constraint problems under online setting,
which we call GraphDA. The key part in GraphDA is to project
both averaging gradient (in dual space) and primal variables (in
primal space) onto lower dimensional subspaces, thus capturing the
graph-structured sparsity effectively. Furthermore, the objective
functions assumed here are generally convex so as to handle differ-
ent losses for online learning settings. To the best of our knowledge,
GraphDA is the first online learning algorithm for graph-structure
constrained optimization problems. To validate our method, we
conduct extensive experiments on both benchmark graph and real-
world graph datasets. Our experiment results show that, compared
to other baseline methods, GraphDA not only improves classifica-
tion performance, but also successfully captures graph-structured
features more effectively, hence stronger interpretability.

KEYWORDS

online learning; dual averaging; graph-structured sparsity
ACM Reference Format:

Baojian Zhou, Feng Chen, and Yiming Ying. 2019. Dual Averaging Method
for Online Graph-structured Sparsity. In The 25th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’19), August 4–8, 2019, An-
chorage, AK, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3292500.3330915

1 INTRODUCTION

As a new paradigm in machine learning, convex online learning
algorithms have received enormous attention [11, 17, 28, 38, 40, 44,
45]. These algorithms update learning models sequentially by using
one training sample at each iteration, which makes them applicable
to large-scale datasets on the fly and still enjoy non-regret property.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $$15.00
https://doi.org/10.1145/3292500.3330915

For better interpretability and less computational complexity in
high dimension data, many online learning algorithms [11, 30, 40,
41] exploit ℓ1 norm or ℓ1/ℓ2 mixed norm to achieve sparse solu-
tion [25, 40, 41]. However, these sparsity-inducing models cannot
characterize more complex (usually non-convex) graph-structured
sparsity constraint, hence, unable to use some important priors
such as graph data.

Graph-structured sparsity models have significant real-world
applications, for example, social events [37], disease outbreaks [36],
computer viruses [10], and gene networks [9]. These applications
all contain graph structure information and the data samples are
usually collected on the fly, i.e., the training samples have been
received and processed one by one. Unfortunately, most of the
graph-structured (non-convex) methods [1, 7, 22, 23] are batch
learning-based, which cannot be applied to the online setting. The
past few years have seen a surge of convex online learning al-
gorithms, such as online projected gradient descent [48], Ada-
Grad [11], Adam [28], ℓ1-RDA [40], FOBOS [13], and many oth-
ers (e.g. [17, 38]). However, they cannot be used to tackle online
graph-structured sparsity problems due to the limitation of sparsity-
inducing norms.

In recent years, machine learning community [8, 14, 15, 18, 29,
42] have made promising progress on online non-convex optimiza-
tion with regards to algorithms and local-regret bounds. Nonethe-
less, these algorithms cannot deal with graph-structured sparsity
constraint problems due to the following two limitations: 1) The
existing non-convexity assumption is only on the loss functions sub-
ject to a convex constraint; 2) Most of these proposed algorithms
are based on online projected gradient descent (PGD), and can-
not explore the structure information, hardly workable for graph-
structured sparsity constraint. To the best of our knowledge, there
is no existing work to tackle the combinatorial non-convexity con-
straint problems under online setting.

In this paper, we aim to design an approximated online learn-
ing algorithm that can capture graph-structured information effec-
tively and efficiently. To address this new and challenging question,
the potential algorithm has to meet two crucial requirements: 1)
graph-structured: The algorithm should effectively capture the la-
tent graph-structured information such as trees, clusters, connected
subgraphs; 2) online: The algorithm should be efficiently applicable
to online setting where training samples can only be processed
one by one. Our assumption on the problem has a non-convex
constraint but with a convex objective, which will sustain higher
applicability in the practice of our setting. Inspired by the success
of dual-averaging [34, 40], we propose the Graph Dual Averaging
Algorithm, namely, GraphDA. The key part in GraphDA is to keep
track of both averaging gradient via dual variables in dual space and
primal variables in primal space. We then use two approximated
projections to project both primal variables and dual variables onto

https://doi.org/10.1145/3292500.3330915
https://doi.org/10.1145/3292500.3330915
https://doi.org/10.1145/3292500.3330915

low dimension subspaces at each iteration. We conduct extensive
experiments to demonstrate that by projecting both primal and
dual variables, GraphDA captures the graph-structured sparsity
effectively. Overall, our contributions are as follows:
• We propose a dual averaging-based algorithm to solve graph-
structured sparsity constraint problems under online setting. To
the best of our knowledge, it is a first attempt to establish an online
learning algorithm for the graph-structured sparsity model.
• We prove the minimization problem occurring at each dual aver-
aging step, which can be formulated as two equivalent optimization
problems: minimization problem in primal space and maximiza-
tion problem in dual space. The two optimization problems can
then be solved approximately by adopting two popular projections.
Furthermore, we provide two exact projection algorithms for the
non-graph data.
• We conduct extensive experiments on both synthetic and real-
world graphs. The experimental results demonstrate that GraphDA
can successfully capture the latent graph-structure during online
learning process. The learned model generated by our algorithm
not only achieves higher classification accuracy but also stronger
interpretability compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows: Related work is
teased out in Section 2. Section 3 gives the notations and problem
definition. In Section 4, we present our main idea and algorithms.
We report and discuss the experiment results in comparison with
other baseline methods in Section 5. A short conclusion ensues
in Section 6. Due to space limit, the detailed experimental setup
and partial experimental results are supplied in Appendix. Our
source code including baseline methods and datasets are accessible
at: https://github.com/baojianzhou/graph-da.

2 RELATEDWORK

In line with the focus of the present work, we categorize highly
related researches into three sub-topics for the sake of clarity.

Online learningwith sparsity. Online learning algorithms [6,
17, 38, 43, 48] try to solve classification or regression problems that
can be employed in a fully incremental fashion. A natural way to
solve online learning problem is to use stochastic gradient descent
by using one sample at a time. However, this type of methods usu-
ally cannot produce any sparse solution. The gradient of only one
sample has such a large variance that renders its projection unreli-
able. To capture the model sparsity, ℓ1 norm-based [5, 11, 13, 30, 40]
and ℓ1/ℓ2 mixed norm-based [41] are used under online learning set-
ting; the dual-averaging [40] adds a convex regularization, namely
ℓ1-RDA to learn a sparsity model. Based on the dual averaging
work, online group lasso and overlapping group lasso are proposed
in [41], which provides us a sparse solution. However, the solution
cannot produce methods directly applicable to graph-structured
data. For example, as pointed out by [40], the levels of sparsity
proposed in [13, 30] are not satisfactory compared with their batch
counterparts.

Model-based sparsity. Different from ℓ1-regularization [39]
or ℓ1-ball constraint-based method [12], model-based sparsity are
non-convex [4, 21–23]. Using non-convex such as ℓ0 sparsity based
methods [3, 35, 46, 47] becomes popular, where the objective func-
tion is assumed to be convex with a sparsity constraint. To capture

graph-structured sparsity constraint such as trees and connected
graphs, a series of work [4, 20, 22, 23] has proposed to use structured
sparsity modelM to define allowed supportsM = {S1, S2, . . . , Sk }.
These complex models are non-convex, and gradient descent-based
algorithms involve a projection operator which is usually NP-hard.
[21–23] use two approximated projections (head and tail) with-
out sacrificing too much precision. However, the above research
work cannot be directly applied to online setting and the objective
function considered is not general loss.

Online non-convex optimization. The basic assumption
in recent progress on online non-convex optimization [8, 14, 15,
18, 29, 42] is that the objective considered is non-convex. Local-
regret bound has been explored in these studies, most of which are
based on projected gradient descent methods, for example, online
projected gradient descent [18] and online normalized gradient
descent [14]. However, these online non-convex algorithms cannot
deal with our problem setting where there exists a combinatorial
non-convex structure.

3 PRELIMINARIES

We begin by introducing some basic mathematical terms and nota-
tions, and then define our problem.

3.1 Notations

An index set is defined as [p] = {1, . . . ,p}. The bolded lower-case
letters, e.g., w,x ∈ Rp , denote column vectors where their i-th
entries arewi , xi . The ℓ2-norm ofw is denoted as ∥w ∥2. The inner
product of x and y on Rp is defined as ⟨x ,y⟩ = x1y1 + · · · + xpyp .
Given a differentiable function f (w) : Rp → R, the gradient atw is
denoted as ∇f (w). The support set ofw , i.e., supp(w) := {i |wi , 0},
is defined as a subset of indices which index non-zero entries. If
|supp(w)| ≤ s ,w is called an s sparse vector. The upper-case letters,
e.g., Ω, denote a subset of [p] and its complement is Ωc = [p]\Ω.
The restricted vector of w on Ω is denoted as wΩ ∈ Rp , where
(wΩ)i = wi if i ∈ Ω; otherwise 0. We define the undirected graph
as G(V,E), where V = [p] is the set of nodes and E is the set
of edges such that E ⊆ {(u,v)|u ∈ V,v ∈ V}. The upper-case
letters, e.g., H ,T , S , stand for subsets of [p] := {1, 2, . . . ,p}. Given
the standard basis {ei : 1 ≤ i ≤ p} of Rp , we also use H ,T , S to
represent subspaces. For example, the subspace S is the subspace
spanned by S , i.e., span{ei : i ∈ S}. We will clarify the difference
only if confusion occurs.

3.2 Problem Definition

Here, we study an online non-convex optimization problem, which
is to minimize the regret as defined in the following:

R(T ,M(M)) :=
T∑
t=1

ft (wt , {xt ,yt }) − min
w ∈M(M)

T∑
t=1

ft (w), (1)

where each ft (wt , {xt ,yt }) is the loss that a learner predicts an
answer for the questionxt after receiving the correct answeryt , and
minw ∈M(M)

∑T
t=1 ft (w) is the minimum loss that the learner can

potentially get. To simplify, we assume ft is convex differentiable.
For example, we can use the least square loss ft (wt , {xt ,yt }) =
(w⊤

t xt − yt)
2 for the online linear regression problem and logistic

loss ft (wt , {xt ,yt }) = log(1 + exp(−yt ·w⊤xt)) for online binary

https://github.com/baojianzhou/graph-da

classification problemwhereyt ∈ {±1}. The goal of the learner is to
minimize the regret R(T ,M(M)). Different from the online convex
optimization setting in [17, 38], M(M) ⊆ Rp is a generally non-
convex set. To capture more complex graph-structured information,
in a series of seminal work [4, 21, 22], a structured sparsity model
M(M) is proposed as follows:

M(M) := {w |supp(w) ⊆ S for some S ∈ M}, (2)

where M = {S1, S2, . . . , Sk } is the collection of allowed structure
supports with Si ∈ [p]. Basically,M(M) is the union of k subspaces.
Each subspace is uniquely identified by Si . Definition (2) is so gen-
eral that it captures a broad spectrum of graph-structured sparsity
models such as trees [20], connected subgraphs [7, 22]. We mainly
focus on the Weighted Graph Model(WGM) proposed in [22].

Definition 1 (Weighted Graph Model [22]). Given an under-
lying graph G = (V,E,c) defined on the coefficients of the unknown
vector w , where V = [p], E ⊆ V × V and associated cost vector c
on edges, then the weighted graph model (G, s,д,B)-WGM can be
defined as the following set of supports:

M ={F : |F | ≤ s, there is an forest F with

VF = F ,γ (F) = д, and c(F) ≤ B},

where B is the budget on cost of edges in forest F , γ (F) is the number
of connected component in forest F denoted as д, and s is the sparsity.
To clarify, forest F is the subgraph induced by its nodes set F , i.e.
F := G(F ,E′), where E′ = {(u,v) : u ∈ F ,v ∈ F , (u,v) ∈ E}. c(F) is
the total edge costs in forest F .

w6

w4 w5 w1

w2w3

w6

w4 w5 w1

w2w3

w6

w4 w5 w1

w2w3

✓

Figure 1: A toy example of Weighted Graph Model

(G, s,д,B)-WGM captures a broad range of graph structures such
as groups, clusters, trees, and subgraphs. A toy example is given in
Figure 1 where we define a graph with 6 nodes in V, 7 edges in E,
and the cost of all edges is set to 1. LetV be associated with a vector
w ∈ R6. Suppose we are interested in connected subgraphs1 with at
most 3 nodes, to capture these subgraphs,M can be defined asM =
{Si |G(Si ,Ei) is connected , |Si | ≤ 3}. By letting the budget B = 3,
and the sparsity parameter s = 3, we can clearly use (G, 3, 1, 3)-
WGM to represent thisM. Figure 1 shows three subgraphs formed
by red nodes and edges. The subgraph induced by {w1,w2,w5} on
the left is in M. However, the subgraph induced by {w2,w5,w6}
in the middle is not in M because of the non-connectivity. The
subgraph formed by {w3,w4,w5,w6} on the right is not inM either,
as it violates the sparsity constraint, i.e., s ≤ 3.

After defining the structure-sparsity modelM(M), we explore
how to design an efficient and effective algorithm to minimize the
1A connected subgraph is the subgraph which has only 1 connected component.

regret under model constraint. An intuitive way to do this is to use
online projected gradient descent [48] where the algorithm needs
to solve the following projection at iteration t :

wt+1 = P(wt − ηt∇ft (wt),M(M)), (3)

where ηt is the learning rate and P is the projection operator onto
M(M), i.e., P(·,M(M)) : Rp → Rp is defined as

P(w,M(M)) = arg min
x ∈M(M)

∥w − x ∥2. (4)

However, there are two essential drawbacks of using (3): First, the
projection in (3) only uses single gradient ∇ft (wt) which is too
noisy (large variance) to capture the graph-structured informa-
tion at each iteration; Second, the training samples coming later
are less important than these coming earlier due to the decay of
learning rate ηt . Recall that ηt needs to decay asymptotically to
O(1/

√
t) in order to achieve a non-regret bound. Fortunately, in-

spired by [34, 40], the above two weaknesses can be successfully
overcome by using dual averaging. The main idea is to keep track-
ing both primal vectors (corresponding towt in primal space) and
dual variables (corresponding to gradients, ∇ft (wt) in dual space2)
at each iteration. In the next section, we focus on designing an
efficient algorithm by using the idea of dual averaging to capture
graph-structured sparsity under online setting.

4 ALGORITHM: GRAPHDA

We try to develop a dual averaging-based method to minimize the
regret (1). At each iteration, the method updateswt by using the
following minimization step:

wt+1 = arg min
w ∈M(M)

{
1

t + 1

t∑
i=0

⟨дi ,w⟩ +
βt
2t

∥w ∥2
2

}
, (5)

where βt is to control the learning rate implicitly and дi is a subgra-
dient in ∂ fi (w, {xi ,yi }) = {д : fi (z, {xi ,yi }) ≥ fi (w, {xi ,yi }) +
⟨д,z −w⟩,∀z ∈ M(R)}3. Different from the convexity explored in
[34] and [40], the problem considered here is generally non-convex,
which makes it NP-hard to solve. Initially, the solution of the primal
is set to zero, i.e., w0 = 0.4 Then at each iteration, it computes
a subgradient дt based on current data sample {xt ,yt } and then
updates wt by using (5) averaging gradient from the dual space.
The algorithm terminates after receiving T samples and returns
the modelwT or w̄T = 1/T

∑T
t=0wt depending on needs. The dual

averaging step (5) has two advantages: 1) The gradient information
of training samples coming later will not decay when new samples
are coming; 2) The averaging gradient can be accumulated during
the learning process; hence we can use it to capture graph-structure
information more effectively than online PGD-based methods.

Due to the NP-hardness to compute (5), it is impractical to di-
rectly use (5). Thus, we have to treat this minimization step more

2Notice that we use ℓ2-norm, i.e. ∥ · ∥2 , which is defined in the Euclidean space
X = Rp . By definition, the dual norm of ℓ2 is identical to itself, i.e., ∥ · ∥∗ = ∥ · ∥2 .
Also, recall that the dual space X ∗ of the Euclidean space is also identical with each
other X ∗ = X = Rp .
3As we assume fi is convex differentiable, then we have ∂fi (w , {xi , yi }) =
{∇fi (w , {xi , yi })}, i.e. дi = ∇fi (w , {xi , yi }).
4There are two advantages: 1. w0 = 0 is trivially in the M(M); 2. w0 = 0 ∈

arg minw ∥w ∥2
2 under convex setting [40] so that sublinear regret can obtain.

carefully for M(M). The minimization step (5) has the following
equivalent projection problems, specified in Theorem 1.

Theorem 1. Assume βt = γ
√
t , where γ > 0 and denote s̄t+1 =

1
t+1

∑t
i=0 дi . The minimization step of (5) can be expressed as the

following two equivalent optimization problems:

max
S ∈M

∥P(−

√
ts̄t+1
γ
, S)∥2

2 (6)

min
S ∈M

∥ −

√
ts̄t+1
γ

− P(−

√
ts̄t+1
γ
, S)∥2

2 , (7)

where P(s, S) is the projection operator that projects s onto the sub-
space spanned by S .

Proof. The original minimization problem in (5) can be equiva-
lently expressed as

wt+1 = arg min
w ∈M(M)

{
⟨s̄t+1,w⟩ +

γ

2
√
t
∥w ∥2

2

}
= arg min

w ∈M(M)

{√t
2γ

∥s̄t+1∥
2
2 + ⟨s̄t+1,w⟩ +

γ

2
√
t
∥w ∥2

2

}
= arg min

w ∈M(M)

γ

2
√
t

w −

(
−

√
t

γ
s̄t+1

)2

2

= arg min
w ∈M(M)

w −

(
−

√
t

γ
s̄t+1

)2

2
, (8)

where the second equality follows by adding a constant to the min-
imization objective and (8) follows by multiplying 2

√
t/γ on the

third equation. Hence, (5) is equivalent to the minimization of (8).
Clearly, (8) is essentially the projection P(−(

√
tst+1)/γ ,M(M)) de-

fined in (4). To further explore (8), notice that one needs to solve
the following equivalent minimization problem:

min
w ∈M(M)

∥ −

√
ts̄t+1
γ

−w ∥2
2 ⇔ min

S ∈M
∥ −

√
ts̄t+1
γ

− P(−
√
ts̄t+1
γ
, S)∥2

2 .

Here, for any x , P(x , S) is an orthogonal projection operator that
projects x onto subspace spanned by S . By the projection theorem,
for any x , it always has the following property:

∥x ∥2
2 − ∥P(x , S)∥2

2 = ∥x − P(x , S)∥2
2 .

Replacing x by −
√
ts̄t+1/γ and adding minimization to both sides

with respect to subspace S , we obtain:

min
S ∈M

{
∥ −

√
ts̄t+1
γ

∥2
2 − ∥P(−

√
ts̄t+1
γ
, S)∥2

2

}
= min

S ∈M
∥−

√
ts̄t+1
γ

− P(−
√
ts̄t+1
γ
, S)∥2

2 .

By moving the minimization into the negative term, we obtain

∥ −

√
ts̄t+1
γ

∥2
2 +max

S ∈M
∥P(−

√
ts̄t+1
γ
, S)∥2

2

= min
S ∈M

∥ −

√
ts̄t+1
γ

− P(−
√
ts̄t+1
γ
, S)∥2

2 . (9)

We prove the theorem. □

The above theorem leads to a key insight that the NP-hard prob-
lem (8) can be solved either by maximizing ∥P(

√
ts̄t+1/γ , S)∥2

2 or
by minimizing ∥

√
ts̄t+1/γ − P(

√
ts̄t+1/γ , S)∥2

2 over S . Inspired by
[21–23], instead of solving these two problems exactly, we apply
two approximated algorithms provided in [22] to solve the problem
approximately. We present the following two assumptions:

Assumption 1 (Head Projection [23]). LetM andMH be the
predefined subspace models. Given anyw , there exists a (cH ,M,MH)

Head-Projection which is to find a subspace H ∈ MH such that

∥P(w,H)∥2 ≥ cH · max
S ∈M

∥P(w, S)∥2, (10)

where 0 < cH ≤ 1. We denote P(w,H) as P(w,M,MH).

Assumption 2 (Tail Projection [23]). Let M and MT be the
predefined subspace models. Given anyw , there exists a (cT ,M,MT)

Tail-Projection which is to find a subspace T ∈ MT such that

∥P(w,T) −w ∥2 ≤ cT · min
S ∈M

∥w − P(w, S)∥2, (11)

where cT ≥ 1. We denote P(w,T) as P(w,M,MT).

To minimize the regret R(T ,M(M)), we propose the approx-
imated algorithm, presented in Algorithm 1 below. Initially, the
primal vectorw0 and dual vector s̄0 are all set to 0. At each iteration,
it works as the following four steps:

• Step 1: The learner receives a question xt and makes a pre-
diction based on xt andwt . After suffering a loss ft (wt , {xt ,yt }),
it computes the gradient дt in Line 4;

• Step 2: In Line 5, the current gradientдt has been accumulated
into s̄t+1, which is ready for the next head projection5;

• Step 3: The head projection inputs the accumulated gradient
s̄t+1 and outputs the vector bt+1 so that supp(bt+1) ∈ MH ;

• Step 4: The next predictor wt+1 is then updated by using
the tail projection, i.e., supp(wt+1) ∈ MT . The weight −

√
t/γ is to

control the learning rate.
The algorithm repeats the above four steps until some stop con-

dition is satisfied. The main difference between our method and
the methods in [34, 40] lies in that, we, as a first attempt, use two
projections (Line 6 and Line 7), to project dual vector s̄t+1 and
primal vectorwt+1 onto a graph-structured subspacesMH andMT
respectively. In dual projection step, most of the irrelevant gradi-
ent entries have been effectively set to zero values. In primal tail
projection step, we make surewt+1 has been projected ontoMT so
that the constraint of interest is satisfied.

Algorithm 1 GraphDA: Online Graph Dual Averaging Algorithm
1: Input: γ ,M
2: s̄0 = 0,w0 = 0
3: for t = 0, 1, 2, . . . do
4: receive {xt ,yt } and compute gt = ∇ft (wt , {xt ,yt })
5: s̄t+1 = s̄t + дt
6: bt+1 = P(s̄t+1,M)

7: wt+1 = P(−
√
t
γ bt+1,M)

8: end for

5Pseudo-code of these two projections are provided in Appendix A for completeness.

In real applications, graph data is not always available, i.e., M
cannot be explicitly constructed by G(V,E), so we often have to
deal with non-graph data but still with the aim to pursue structure
sparsity constraint. To compensate, we provide Dual Averaging Iter-
ative Hard Thresholding, namely DA-IHT, presented in Theorem 2,
to handle non-graph data cases.

Theorem 2. Assume that the graph information is not available
or the graph is a complete graph and the budget B is large enough.
We can define our modelM such that it includes all possible s-sparse
subgraphs, i.e.,M = {S : |S | ≤ s}. Then there exists exactly head and
tail projection algorithm such that

∥P(w,H)∥2
2 = max

S ∈M
∥P(w, S)∥2

2 , (12)

and
∥P(w,T) −w ∥2

2 = min
S ∈M

∥w − P(w, S)∥2
2 . (13)

Proof. Since the graph is a complete graph (i.e., all subgraphs
are connected.) and the budget constraint B is large enough, any
subset S that has s elements belongs toM. In this case,M contains
all s-subsets, i.e.,M = {Si : |Si | ≤ s}. By sorting the magnitudes of
w in a descending manner, we have

|wτ1 | ≥ |wτ2 | ≥ . . . ≥ |wτs | ≥ . . . ≥ |wτp |.

Let H = T = {τ1,τ2, . . . ,τs }. For any s-sparse set S , by the fact
that |wτ1 |, |wτ2 |, . . . , |wτs | are the largest magnitude s entries, we
always have

∥P(w,H)∥2
2 ≥ ∥P(w, S)∥2

2 .

At the same time, H ∈ M, then

∥P(w,H)∥2
2 ≤ max

S ∈M
∥P(w, S)∥2

2 .

Hence, we prove (12). In a similar vein, we can also prove (13). □

By Theorem 2, one can implement the two projections in Line 6
and 7 of Algorithm 1 by sorting themagnitudes s̄t+1 and−

√
t/γbt+1

respectively, to deal with non-graph data. DA-IHT will be used as
a baseline in our experiment to compare with the graph-based
method, GraphDA.

Time Complexity. At each iteration of GraphDA, the time
complexity of two projections depends on the graph size p and the
number of edges |E|. As proved in [22], two projections have the
time complexity O(|E| log3(p)). In many real-world applications,
the graphs are usually sparse, i.e., O(p), and then the total complex-
ity of each iteration of GraphDA is O(p + p log3(p)). Our method
is characterized by two merits: 1) The time cost of each iteration
is nearly-linear time; 2) At each iteration, it only has O(p + |E|)
memory cost, where O(p) stores the averaging gradient and current
solution and O(|E|) is to save the graph. For DA-IHT, we need to
select the top s largest magnitude entries at each iteration. Thus,
the time cost of per-iteration is O(sp) with O(p) memory cost.

Regret Discussion. Given any online learning algorithm,
we are interested in whether the regret R(T ,M(M)) is sub-linear
and whether we can bound the estimation error ∥wt −w∗∥2. We
first assume the primal vectors are {wt }

T
t=0 and the dual gradient

sequences {дt }Tt=0. We then assume that the potential solution
w is always bounded in D, i.e., ∥w ∥2 ≤ D and gradients are also

bounded, i.e., ∥дt ∥2 ≤ L. Then for any T ≥ 1 and anyw ∈ M(M),
the regret in [40] can be bounded as the following:

R(T ,M(M)) ≤ 2DL
√
T . (14)

Given any optimal solutionw∗ ∈ arg minw ∈M(M)

∑T
i=1 fi (w) and

the solutionwT , the estimation error, i.e., ∥wT+1 −w∗∥ is bounded
as the following:

∥wT+1 −w∗∥2
2 ≤ 2

(
D2 +

L2

γ 2 −
1

γ
√
T
R(T ,M(M))

)
. (15)

However, the regret bound (14) and estimation error (15) are un-
der the assumption that the constraint set M(M) is convex. For
GraphDA, an approximated algorithm, it is difficult to establish
a sublinear regret bound. The reasons are two-fold: 1) Due to the
non-convexity of M(M), it is possible that GraphDA converges
to a local minimal, so the regret will potentially be non-sublinear;
2) The solution of model projection is approximated, making the
regret analysis harder. Although recent work [14, 18] shows that it
is still possible to obtain a local-regret bound when the objective
function is non-convex, it is different from our case since we assume
the objective function convex subject to a non-convex constraint.
We leave the theoretical regret bound analysis of GraphDA an
open problem.

5 EXPERIMENTS

To corroborate our algorithm, we conduct extensive experiments,
comparing GraphDA with some popular baseline methods. Note
DA-IHT derived from Theorem 2 is treated as a baseline method.
We aim to answer the following questions:
• Question Q1: Can GraphDA achieve better classification per-
formance compared with baseline methods?

• Question Q2: Can GraphDA learn an stronger interpretative
model through capturing more meaningful graph-structure fea-
tures compared with baseline methods?

(a) Graph01 (b) Graph02 (c) Graph03 (d) Graph04

Figure 2: Four benchmark graphs from [2]

5.1 Datasets and evaluation metrics

Datasets. We use the following three publicly available graph
datasets: 1) Benchmark Dataset [2]. Four benchmark graphs [2]
are shown in Figure 2. The four subgraphs are embedded into 33×33
graphs with 26, 46, 92, and 132 nodes respectively. Each graph has
p = 1, 089 nodes andm = 2, 112 edges with unit weight 1.0. We use
the Benchmark dataset to learn an online graph logistic regression
model; 2)MNIST Dataset [31]. This popular hand-writing dataset
is used to test GraphDA on online graph sparse linear regression. It
contains ten classes of handwritten digits from 0 to 9. We randomly
choose each digit as our target graph. Each pixel stands for a node.
There exists an edge if two nodes are neighbors. We set the weights

to 1.0 for edges; 3) KEGG Pathway Dataset [32]. The Kyoto En-
cyclopedia of Genes and Genomes (KEGG) dataset contains 5,372
genes. These genes (nodes) form a connected graph with 78,545
edges. The edge weights stand for correlations between two genes.
We use KEGG to detect a related pathway.
Evaluation metrics. We have two categories of metrics to an-
swer Question Q1 and Question Q2 respectively. To measure
classification performance ofwt or w̄t

6, we use classification Ac-
curacy(Acc), the Area Under Curve (AUC) [16], and the number of
Misclassified samples (Miss). To evaluate feature-level performance
(interpretability), we use Precision (Pre), Recall (Rec), F1-score (F1),
and Nonzero Ratio (NR). To clarify, given any optimalw∗ ∈ Rp and
learned modelwt , Pre, Rec, F1, and NR are defined as follows:

Prewt =
|supp(w∗) ∩ supp(wt)|

|supp(wt)|
, Recwt =

|supp(w∗) ∩ supp(wt)|

|supp(w∗)|

F1wt =
2|supp(w∗) ∩ supp(wt)|

|supp(w∗)| + |supp(wt)|
, NRw =

|supp(w)|

p
. (16)

5.2 Baseline methods

We consider the following eight baseline methods: 1) ℓ1-RDA [40].
We use the enhanced Regularized Dual-Averaging (ℓ1-RDA) method
in Algorithm 2 of [40]; 2)DA-GL [41]. Online Dual Averaging Group
Lasso (DA-GL) is the dual averaging method with group Lasso; 3)
DA-SGL [41]. It also uses dual averaging, but with sparse group
Lasso as the regularization; 4) AdaGrad [11]. The adaptive gradi-
ent with ℓ1 regularization is different from ℓ1-RDA [40]. AdaGrad
yields a dedicated step size for each feature inversely. In order to
capture the sparsity, we use its ℓ1 norm-based method for com-
parison; 5) Adam [28]. Since there is no sparsity regularization in
Adam, it generates totally dense models. We use its online version7
to compare with these sparse methods; 6) StoIHT [35]. We use this
method with block size 1, which can be treated as online learning
setting; 7) DA-IHT, derived from Theorem 2 in this paper. We use it
to compare with GraphDA, which has graph-structure constraint;
8) GraphStoIHT. We apply the head and tail projection to StoIHT
to generate GraphStoIHT.

Online Setting. All methods are completely online, i.e., all
learning algorithms receive a single sample per-iteration. Due to
the space limit, the parameters of all baseline methods including
GraphDA are in Appendix A. All numerical results are averaged
from 20 trials. The following three sections report and discuss the
experimental results on each dataset to answer Q1 and Q2.

5.3 Results from Benchmark dataset

Given the training dataset {xi ,yi }ti=1, wherexi ∈ R
p andyi ∈ {±1}

on the fly, the online graph sparse logistic regression is to minimize
the regret R(t ,M(M)) where ft (wt) is a logistic loss defined as

ft (wt , {xt ,yt }) = log(1 + exp(−yt ·w⊤
t xt)).

We simulate the negative and positive samples as done in [2]. yt =
−1 stands for no signals or events (“business-as-usual”). yt = +1
means a certain event happens such as disease outbreak/computer
virus hidden in current data sample xt , and feature values in sub-
graphs are abnormally higher. That is, if yt = −1, then xvi ∼

6For the comparison, we also evaluate the averaged decision w̄t similar as done in [40].
7One can find more details of the online version in Section 4 of [28].

1.7

1.9

2.1

lo
g(

M
is

s w
t)

(a) Graph01 (b) Graph02 (c) Graph03 (d) Graph04

150 250 350
Samples Seen

1.7

1.9

2.1

lo
g(

M
is

s w̄
t)

150 250 350
Samples Seen

ADAM
`1-RDA

AdaGrad
DA-GL

GraphStoIHT
StoIHT

DA-SGL
DA-IHT

GraphDA

150 250 350
Samples Seen

150 250 350
Samples Seen

Figure 3: The logarithm of the number of misclassified sam-

ples as a function of samples seen

N(0, 1) ∀ vi ∈ V; and if yt = +1, then,

(xi)vi ∼

{
N(µ, 1) vi ∈ F

N(0, 1) vi , F ,
(17)

where F stands for the nodes of a specific subgraph showcased in
Figure 2. Then each entry (w∗)i is µ if i ∈ F ; otherwise 0. We first fix
µ = 0.3 and then generate validating, training, and testing samples,
each with 400 samples. All methods stop at t = 400 after seeing
all training samples once. Parameters are tuned on 400 validating
samples. We testwt and w̄t on testing samples.

Classification Performance on fixed µ. Table 1 shows that
four all three indicators of classification performance, GraphDA
scores higher than the other baseline methods. Specifically, it has
the highest Acc (0.749, 0.739) and AUC (0.749, 0.739) with respect to
wt and w̄t . The averaged number of misclassified samples (Miss) is
lower (133.45, 136.20), than other methods by quite a large margin.
Figure 3 further shows that the number of misclassified samples
of GraphDA keeps the lowest during the entire online learning
course for all four graphs [2].

12 24 36 48
Sparsity

0.25

0.30

0.35

0.40

T
es

t-
se

t
E

rr
or

ra
te

(a) Graph01

20 40 60 80
Sparsity

0.18

0.24

0.30

0.36

(b) Graph02

40 80 120 160
Sparsity

0.10

0.15

0.20

0.25

(c) Graph03

50 110 170 230
Sparsity

0.06

0.11

0.16

0.21

(d) Graph04

Adam
GraphDA

Figure 5: Test dataset error rates as a function of sparsity s

The sparsity s is an important parameter for GraphDA. We
explore how s affects the test error rate8. We compare the error rate
of GraphDA with that of the non-sparse method Adam. Figure 5
clearly demonstrates that GraphDA has the least test error rate
corresponding to the true model sparsity (26, 46, 92, 132 for these
four subgraphs). When s reaches the true sparsity (26, 46, 92, 132
respectively), the testing error rate of GraphDA is the minimum.

Classification Performance on different t and µ. We ex-
plore how different numbers of training sample and different µ
affects the performance of each method similarly done in [41]. First,
we choose t from set {100, 200, 300, . . . , 1000}, and tune the model
based on classification accuracy. Results in Figure 6 show that when
the number of training sample increases, the classification accuracy
of all methods are increasing accordingly, but GraphDA enjoys
8The test error rate is calculated as 1 − Accwt similar as done in [11].

Table 1: Classification performance on Graph01 of Benchmark dataset

Method Prewt ±std Recwt ±std F1wt ±std AUCwt ,w̄t Accwt ,w̄t Misswt ,w̄t NRwt ,w̄t
Adam 0.024±0.00 1.000±0.00 0.047±0.00 (0.618, 0.603) (0.619, 0.603) (166.35, 173.10) (100.0%, 100.0%)
ℓ1-RDA 0.267±0.11 0.863±0.09 0.389±0.13 (0.693, 0.672) (0.694, 0.673) (155.30, 166.05) (11.58%, 83.60%)
AdaGrad 0.256±0.11 0.877±0.09 0.379±0.13 (0.696, 0.636) (0.696, 0.637) (156.00, 166.00) (11.33%, 100.0%)
DA-GL 0.176±0.11 0.967±0.04 0.283±0.12 (0.735, 0.666) (0.735, 0.667) (142.90, 162.20) (15.99%, 100.0%)
DA-SGL 0.523±0.40 0.854±0.14 0.506±0.35 (0.699, 0.647) (0.699, 0.647) (151.00, 165.50) (25.54%, 100.0%)
StoIHT 0.057±0.04 0.150±0.08 0.072±0.03 (0.552, 0.523) (0.553, 0.523) (194.55, 195.25) (7.79%, 40.62%)

GraphStoIHT 0.151±0.12 0.356±0.16 0.194±0.12 (0.603, 0.570) (0.602, 0.570) (174.65, 181.40) (7.84%, 22.06%)
DA-IHT 0.507±0.20 0.744±0.12 0.566±0.11 (0.697, 0.666) (0.697, 0.666) (155.65, 162.85) (4.35%, 39.50%)
GraphDA 0.869±0.13 0.906±0.04 0.880±0.08 (0.749, 0.739) (0.749, 0.739) (133.45, 136.20) (2.56%, 32.12%)

G
ra

ph
01

-w
t

Adam `1-RDA AdaGrad DA-GL DA-SGL StoIHT GraphStoIHT DA-IHT GraphDA True Model

G
ra

ph
02

-w
t

G
ra

ph
03

-w
t

G
ra

ph
04

-w
t

Figure 4: The learned modelswt of four benchmark graphs. These models are from the first trial of all 20 trials. For each pixel

i, black stands for (wt)i < 0, gray (wt)i = 0, and white (wt)i > 0.

the highest classification accuracy on bothwt and w̄t . Second, we
choose µ from the set {0.1, 0.2, . . . , 1.0} and fix t = 400. As is re-
ported in Figure 7, when µ is small (a harder classification task),
all methods achieve lower accuracy; when µ is large (an easier
task), all methods can obtain very high accuracy except StoIHT
and GraphIHT. Again, Acc of GraphDA is the highest.

100 300 500 700 900
Samples Seen

0.55

0.60

0.65

0.70

0.75

(a) Accwt

100 300 500 700 900
Samples Seen

(b) Accw̄t

Adam
`1-RDA
AdaGrad
DA-GL
GraphStoIHT
StoIHT
DA-SGL
DA-IHT
GraphDA

Figure 6: The classification accuracy on testing dataset as a

function of number of training samples seen

Model interpretability. Table 1 shows that three out of the
four indicators of feature-level performance for GraphDA score
higher than for the other baseline methods. To be more specific,
our method has the highest F1, 0.880, exceeding other methods by
a large margin, which means that graph-structured information
does help improve its performance. It also testifies that the head/tail
projection during the online learning process does help capture
more meaningful features than others. The nonzero ratio (NR) of
wt and w̄t is the least. The learnedwt in Figure 4 shows GraphDA

successfully captures these subgraphs in wt , which are the clos-
est to true models in terms of shapes and values (white colored
pixels). Adam learns a totally dense model, and hence has worse
performance.DA-IHT and ℓ1-RDA obtain very similar performance,
probably because both of them use the dual averaging techniques.
The results of StoIHT and GraphStoIHT testify that the online
PGD-based methods hardly learn an interpretable model. In brief,
our algorithm exploits the least number of features to learn the best
model among all of the methods.

0.2 0.4 0.6 0.8
µ

0.6

0.7

0.8

0.9

(a) Accwt

0.2 0.4 0.6 0.8
µ

(b) Accw̄t

Adam
`1-RDA
AdaGrad
DA-GL
GraphStoIHT
StoIHT
DA-SGL
DA-IHT
GraphDA

Figure 7: The classification accuracy on testing dataset as a

function of µ.

5.4 Results from MNIST dataset

The goal of online graph sparse linear regression is to minimize the
regret where each ft (wt) is the least square loss defined as

ft (wt , {xt ,yt }) = (yt − ⟨wt ,xt ⟩)
2. (18)

Training Samples

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
o

d
el

Training Samples Training Samples

`1-RDA
DA-IHT
AdaGrad
DA-GL
DA-SGL
GraphDA

0.2

0.4

0.6

0.8

C
o

n
st

an
t

M
o

d
el

200 400 600 800
Samples Seen

0.2

0.4

0.6

0.8

G
au

ss
ia

n
M

o
d

el

200 400 600 800
Samples Seen

200 400 600 800
Samples Seen

Figure 8: Three handwritten digits 0, 4 and 5 (top row) and

the F1 score as a function of samples seen (2nd to 4th row).

On this dataset, we use the least square loss as the objective function.
The experiment is to compare the feature-level F1 score of different
algorithms. We generate 1,400 data samples by using the following
linear relation:

yt = x⊤t w
∗,

where xt ∈ N(0, I). We use three different strategies to obtainw∗.
The first one is to directly use the sparse images and then normalize
them to the range [0.0, 1.0], which we call Normalized Model. The
second is to generatew∗ by letting all non-zeros be 1.0, which is
called Constant Model. The third is to generate the nonzero nodes by
using Gaussian distribution (w∗)i ∼ N(0, 1) independently, which
is Gaussian Model. Again, our dataset is partitioned into three parts:
training, validating and testing samples. We increase the number
of training samples n from {50, 100, . . . , 1000} and then use 200
samples as validating dataset to tune the model. For all the eight
online learning algorithms, we pass each training sample once and
stop training when all training samples are used. The results shown
in Figure 8 are generated from the 200 testing samples.

Adam, StoIHT and GraphStoIHT are excluded from compari-
son because of their inferior performance. From Figure 8, we can
observe that when the training samples increase, the F1 score of
all methods is increasing correspondingly. But the F1 score values
of GraphDA in Normalized Model, Constant Model, and Gaussian
Model are the highest among the six methods.

5.5 Results from KEGG dataset

To demonstrate that GraphDA can capture more meaningful fea-
tures during online learning process, we test it on a real-world
protein-protein iteration (PPI) network in [32]9. This online learn-
ing scenario could be realistic since the training samples can be
collected on the fly. More Details of the dataset including the data

9It was originally provided in KEGG [27]

preprocessing are in Appendix B.3. We explore a specific gene path-
way, HSA05213, related with endometrial cancer10. Due to the lack
of true labels and ground truth features (genes), we directly use
the two data generation strategies in [32], namely Strategy 1 (corre-
sponding to a hard case) and Strategy 2 (corresponding to an easy
case). After the data generation, we have 50 ground truth features.
The number of positive and negative samples are both 100. The
goal is to find out how many endometrial cancer-related genes are
learned from different algorithms as done by [32]. All algorithms
stop when they have seen 200 training samples.

50 90 130 170
Samples Seen

0.1

0.2

0.3

0.4

F
1

S
co

re

(a) Strategy 1

50 90 130 170
Samples Seen

0.2

0.4

0.6

0.8

F
1

S
co

re

(b) Strategy 2

`1-RDA

DA-IHT

AdaGrad

DA-GL

DA-SGL

GraphDA

Figure 9: Node level F1 score as a function of the number of

training samples have seen.

We report the feature F1 score in Figure 9.GraphDA outperforms
the other baseline methods in terms of both two strategies, with F1
score about 0.5 for Strategy 1 and about 0.9 for Strategy 2, higher
than the rest methods. Interestingly, DA-OL and DA-SOL achieve
better results only between 60 and 70 training samples and then
become worse between 70 and 100. A possible explanation is that
the learned model selected by the tuned parameters is not steady
when the number of training samples seen is small. In addition
to a better F1 score, another strength of GraphDA and DA-IHT
is that the standard deviation of F1 score is smaller than other
convex-based methods, including ℓ1-RDA, DA-GL, and DA-SGL.

RDA-L1 DA-IHT AdaGrad DA-DL DA-SDL GraphDA

Figure 10:HSA05213 pathway detected by differentmethods.

The red nodes are the genes in HSA05213 while blue nodes

are the genes not in HSA05213. Results of each row are from

a specific trial (from trial 1 to trial 5). Each column shows the

results found by a specific method.

In Figure 10, we show the identified genes by different meth-
ods. Clearly, GraphDA can find more meaningful genes, indicated
by less blue nodes (genes found but not in HSA05213) and more
10Details of pathway HSA05213(50 genes) can be found in https://www.genome.jp/
dbget-bin/www_bget?hsa05213

https://www.genome.jp/dbget-bin/www_bget?hsa05213
https://www.genome.jp/dbget-bin/www_bget?hsa05213

red nodes (genes found and in HSA05213). However, all the other
five baseline methods have many isolated nodes (not connected to
cancer-related genes).

6 CONCLUSION AND FUTUREWORK

In this paper, we propose a dual averaging-basedmethod,GraphDA,
for online graph-structured sparsity constraint problems. We prove
that the minimization problem in the dual averaging step can be
formulated as two equivalent optimization problems. By projecting
the dual vector and primal variables onto lower dimensional sub-
spaces, GraphDA can capture graph-structure information more
effectively. Experimental evaluation on one benchmark dataset and
two real-world graph datasets shows that GraphDA achieves better
classification performance and stronger interpretability compared
with the baseline methods so as to answer the two questions raised
at the beginning of the experiment section. It remains interesting
if one can prove that both the exact and approximated projections
have non-regret bound under some proper assumption, and if one
can explore learning a model under the setting that true features
are time evolving [24].

7 ACKNOWLEDGEMENTS

The work of Yiming Ying is supported by the National Science
Foundation (NSF) under Grant No #1816227. The work of Baojian
Zhou and Feng Chen is supported by the NSF under Grant No
#1815696 and #1750911.

REFERENCES

[1] Cem Aksoylar, Lorenzo Orecchia, and Venkatesh Saligrama. 2017. Connected
Subgraph Detection with Mirror Descent on SDPs. In ICML. PMLR, 51–59.

[2] Ery Arias-Castro, Emmanuel J Candes, Arnaud Durand, et al. 2011. Detection of
an anomalous cluster in a network. The Annals of Statistics 39, 1 (2011), 278–304.

[3] Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. 2013. Greedy sparsity-
constrained optimization. JMLR 14, Mar (2013), 807–841.

[4] Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. 2010.
Model-based compressive sensing. IEEE Transactions on Information Theory 56, 4
(2010), 1982–2001.

[5] Léon Bottou. 1998. Online learning and stochastic approximations. On-line
learning in neural networks 17, 9 (1998), 142.

[6] Léon Bottou and Yann L Cun. 2004. Large scale online learning. In Advances in
neural information processing systems, Vol. 16. MIT Press, 217–224.

[7] Feng Chen and Baojian Zhou. 2016. A generalized matching pursuit approach for
graph-structured sparsity. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. AAAI Press, 1389–1395.

[8] Lin Chen, Hamed Hassani, and Amin Karbasi. 2018. Online Continuous Sub-
modular Maximization. In International Conference on Artificial Intelligence and
Statistics. PMLR, 1896–1905.

[9] Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee, and Trey Ideker.
2007. Network-based classification of breast cancer metastasis. Molecular systems
biology 3, 1 (2007), 140.

[10] Moez Draief, Ayalvadi Ganesh, and Laurent Massoulié. 2006. Thresholds for
virus spread on networks. In Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools. ACM, 51.

[11] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR 12, Jul (2011), 2121–2159.

[12] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008.
Efficient projections onto the l1-ball for learning in high dimensions. In ICML.
ACM, 272–279.

[13] John Duchi and Yoram Singer. 2009. Efficient online and batch learning using
forward backward splitting. JMLR 10, Dec (2009), 2899–2934.

[14] Xiand Gao, Xiaobo Li, and Shuzhong Zhang. 2018. Online Learning with Non-
Convex Losses andNon-Stationary Regret. In International Conference on Artificial
Intelligence and Statistics. PMLR, 235–243.

[15] Alon Gonen and Elad Hazan. 2018. Learning in Non-convex Games with an
Optimization Oracle. arXiv preprint arXiv:1810.07362 (2018).

[16] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36.

[17] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations
and Trends® in Optimization 2, 3-4 (2016), 157–325.

[18] Elad Hazan, Karan Singh, and Cyril Zhang. 2017. Efficient Regret Minimization
in Non-Convex Games. In ICML. PMLR, 1433–1441.

[19] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2014. A fast, adaptive variant
of the Goemans-Williamson scheme for the prize-collecting Steiner tree problem.
In Workshop of the 11th DIMACS Implementation Challenge.

[20] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2014. A fast approxima-
tion algorithm for tree-sparse recovery. In Information Theory (ISIT), 2014 IEEE
International Symposium on. IEEE, 1842–1846.

[21] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2015. Approximation algo-
rithms for model-based compressive sensing. IEEE Transactions on Information
Theory 61, 9 (2015), 5129–5147.

[22] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2015. A nearly-linear time
framework for graph-structured sparsity. In ICML. PMLR, 928–937.

[23] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2016. Fast recovery from a
union of subspaces. In NIPS. 4394–4402.

[24] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. 2017. Learning with Feature
Evolvable Streams. In NIPS. 1416–1426.

[25] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. 2009. Group lasso
with overlap and graph lasso. In ICML. ACM, PMLR, 433–440.

[26] David S Johnson, Maria Minkoff, and Steven Phillips. 2000. The prize collecting
Steiner tree problem: theory and practice. In SODA. Society for Industrial and
Applied Mathematics, 760–769.

[27] Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and KanaeMorishima.
2016. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
acids research 45, D1 (2016), D353–D361.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[29] Jean Lafond, Hoi-To Wai, and Eric Moulines. 2015. On the online Frank-Wolfe
algorithms for convex and non-convex optimizations. arXiv:1510.01171 (2015).

[30] John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via
truncated gradient. JMLR 10, Mar (2009), 777–801.

[31] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[32] Alexander LeNail, Ludwig Schmidt, Johnathan Li, Tobias Ehrenberger, Karen
Sachs, Stefanie Jegelka, and Ernest Fraenkel. 2017. Graph-Sparse Logistic Regres-
sion. arXiv preprint arXiv:1712.05510 (2017).

[33] Taibo Li, Rasmus Wernersson, Rasmus B Hansen, Heiko Horn, Johnathan Mer-
cer, Greg Slodkowicz, Christopher T Workman, Olga Rigina, Kristoffer Rapacki,
Hans H Stærfeldt, et al. 2017. A scored human protein–protein interaction
network to catalyze genomic interpretation. Nature methods 14, 1 (2017), 61.

[34] Yurii Nesterov. 2009. Primal-dual subgradient methods for convex problems.
Mathematical programming 120, 1 (2009), 221–259.

[35] Nam Nguyen, Deanna Needell, and Tina Woolf. 2017. Linear convergence of
stochastic iterative greedy algorithms with sparse constraints. IEEE Transactions
on Information Theory 63, 11 (2017), 6869–6895.

[36] Jing Qian, Venkatesh Saligrama, and Yuting Chen. 2014. Connected Sub-graph
Detection.. In AISTATS, Vol. 14. 22–25.

[37] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Tatti.
2014. Event detection in activity networks. In KDD. ACM, 1176–1185.

[38] Shai Shalev-Shwartz et al. 2012. Online learning and online convex optimization.
Foundations and Trends® in Machine Learning 4, 2 (2012), 107–194.

[39] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288.

[40] Lin Xiao. 2010. Dual averaging methods for regularized stochastic learning and
online optimization. JMLR 11, Oct (2010), 2543–2596.

[41] Haiqin Yang, Zenglin Xu, Irwin King, and Michael R Lyu. 2010. Online learning
for group lasso. In ICML. PMLR, 1191–1198.

[42] Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing
Wong. 2018. An optimal algorithm for online non-convex learning. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 2, 2 (2018), 25.

[43] Yiming Ying and Massimiliano Pontil. 2008. Online gradient descent learning
algorithms. Foundations of Computational Mathematics 8, 5 (2008), 561–596.

[44] Yiming Ying and D-X Zhou. 2006. Online regularized classification algorithms.
IEEE Transactions on Information Theory 52, 11 (2006), 4775–4788.

[45] Yiming Ying and Ding-Xuan Zhou. 2017. Unregularized online learning algo-
rithms with general loss functions. Applied and Computational Harmonic Analysis
42, 2 (2017), 224–244.

[46] Xiaotong Yuan, Ping Li, and Tong Zhang. 2014. Gradient hard thresholding
pursuit for sparsity-constrained optimization. In ICML. PMLR, 127–135.

[47] Pan Zhou, Xiaotong Yuan, and Jiashi Feng. 2018. Efficient Stochastic Gradient
Hard Thresholding. In NIPS. Curran Associates, Inc., 1985–1994.

[48] Martin Zinkevich. 2003. Online convex programming and generalized infinitesi-
mal gradient ascent. In ICML. PMLR, 928–936.

A REPRODUCIBILITY

A.1 Implementation details

All experiments are tested on a server of Intel Xeon(R) 2.40GHZ
E5-2680 with 251GB of RAM. The code is written in Python2.7
and C language with the standard C11. The implementation of the
head and tail projection follows the original implementation11. We
present the pseudo code in Algorithm 2 below. The two projections
are essentially two binary search algorithms. Each iteration of the
binary search executes the Prize Collecting Steiner Tree (PCST)
algorithm [26] on the target graph. Both projections have two main
parameters: a lower bound sparsity sl and an upper bound sparsity
sh . In all of the experiments, two sparsity parameters have been
set to sl = p/2 and sh = sl ∗ (1 + ω) for the head projection, where
ω is the tolerance parameter set to 0.1. For the tail projection, we
set sl = s and sh = sl ∗ (1 + ω). The binary search algorithm
terminates when it reaches max_iter = 20 maximum iterations.
Line 7 of Algorithm 2 is the PCST algorithm proposed in [19]. We
use a non-root version and Goemans-Williamson pruning method
to prune the final forest.

Algorithm 2 Head/Tail Projection (P(w,M)) [22]

1: Input:w,max_iter,M = (G(V,E,c), sl , sh ,д)
2: π = w ·w // vector dot product, i.e., πi = wi ∗wi
3: λl = 0, λh = max{π1,π2, . . . ,πp }, λm = 0, t = 0
4: repeat
5: λm = (λl + λh)/2
6: cm = λm · c // scale dot product, i.e., (cm)i = λm ∗ ci
7: F = PCST(G(V,E,cm),π ,д)
8: if sl < |F | < sh then

9: return wF

10: end if

11: if |F | > sh then

12: λl = λm
13: else

14: λh = λm
15: end if

16: t = t + 1
17: until t > max_iter
18: ch = λh · c
19: F = PCST(G(V,E,ch),π ,д)
20: return wF

A.2 Parameter tuning

Initial parameters w0 of all baseline methods and proposed algo-
rithms are zero vectors w0 = 0, which means we train all methods
starting from a zero point. We list all related methods and their cor-
responding parameter settings below. (1) ℓ1-RDA is the enhanced
version provided in Algorithm 2 of [40]. There are three parameters:
The ℓ1-regularization parameter λ is chosen from {0.0001, 0.0005,
0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0} which
is a superset used in [40]. The parameter γ to control the learning
11The two projections were originally implemented in C++, which are available at:
https://github.com/ludwigschmidt/cluster_approx. We implement them by using C
language. Taking the advantage of the continuous memory of arrays in C, our code is
faster than original one.

rate is chosen from {1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1000.0, 5000.0,
10000.0 }, and the sparsity-enhancing parameter ρ is chosen from
{0.0, 0.00001, 0.000005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1.0}, where 0.0 is for the basic regularization. All the three
parameter sets are supersets used in [40]. (2) Adam. We directly
use the parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 provided in [28].
For the magnitude of steps in parameter space α , we choose it from
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 }. (3) DA-GL/SGL
have two main parameters, λ to control the sparsity andγ to control
the learning rate. We choose 3 × 3 grids as groups for Benchmark
dataset and choose 2 × 2 grids for MNIST dataset. (4) DA-SGL has
an additional parameter γд , which is set to 1.0 for all groups as done
in [41]. For each group i , there exists an additional parameter ri
for DA-SGL. We set it as default value ri = 1 as recommended by
the authors. (5) AdaGrad has two main parameters, λ to control
sparsity and η to control the learning rate, which is from {0.0001
, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0,
500.0, 1000.0, 5000.0}. (6) StoIHT has two parameters: sparsity s
from {5, 10, 15, 20, 25, 26, 30, 35, 40, 45, 46, 50, 55, 60, 65, 70, 75, 80,
85, 90, 92, 95, 100, 105, 110, 115, 120, 125, 130, 132, 135, 140, 145,
150}, and γ to control the learning rate. (7) GraphStoIHT shares
the same parameter settings (sparsity s and γ) as GraphDA. The
block size of GraphStoIHT and StoIHT are set to 1. (8) GraphDA
has parameters γ and s .

B MORE EXPERIMENTAL RESULTS

B.1 More results from Benchmark dataset

We present the results of Graph02, Graph03 and Graph04 in Table 2,
3, 4, respectively. Basically, we show the classification performance
(Acc, Miss, AUC) and feature-level performance (Pre, Rec, F1, NR).
The size of validating and testing dataset are both 400. All results
are averaged from 20 trials of experiment.

Table 2: Performance of Graph02

Method Prewt Recwt F1wt AUCwt ,w̄t Accwt ,w̄t Misswt ,w̄t NRwt ,w̄t
Adam 0.042 1.000 0.081 (0.697, 0.663) (0.696, 0.663) (144, 151) (100.0%, 100.0%)
ℓ1-RDA 0.371 0.876 0.494 (0.772, 0.732) (0.772, 0.731) (127, 140) (13.31%, 96.47%)
AdaGrad 0.342 0.888 0.470 (0.771, 0.711) (0.771, 0.711) (125, 141) (14.43%, 100.0%)
DA-GL 0.270 0.976 0.415 (0.809, 0.755) (0.809, 0.755) (114, 138) (17.07%, 100.0%)
DA-SGL 0.283 0.948 0.314 (0.777, 0.738) (0.777, 0.737) (123, 141) (45.42%, 100.0%)
StoIHT 0.102 0.217 0.132 (0.586, 0.557) (0.586, 0.557) (171, 179) (9.48%, 45.60%)

GraphStoIHT 0.279 0.355 0.287 (0.669, 0.620) (0.669, 0.620) (150, 158) (7.31%, 19.29%)
DA-IHT 0.679 0.741 0.694 (0.776, 0.733) (0.776, 0.733) (132, 141) (4.86%, 42.86%)
GraphDA 0.855 0.870 0.850 (0.811, 0.799) (0.811, 0.799) (106, 107) (4.55%, 43.89%)

Table 3: Performance of Graph03

Method Prewt Recwt F1wt AUCwt ,w̄t Accwt ,w̄t Misswt ,w̄t NRwt ,w̄t
Adam 0.084 1.000 0.156 (0.820, 0.789) (0.820, 0.788) (104, 116) (100.0%, 100.0%)
ℓ1-RDA 0.340 0.940 0.488 (0.870, 0.833) (0.869, 0.833) (88, 104) (26.15%, 99.51%)
AdaGrad 0.318 0.942 0.462 (0.872, 0.825) (0.872, 0.824) (88, 106) (29.21%, 100.0%)
DA-GL 0.289 0.990 0.443 (0.894, 0.853) (0.894, 0.853) (78, 100) (32.07%, 100.0%)
DA-SGL 0.166 0.990 0.283 (0.883, 0.829) (0.883, 0.828) (89, 111) (52.19%, 100.0%)
StoIHT 0.156 0.208 0.175 (0.635, 0.593) (0.634, 0.592) (162, 173) (11.62%, 50.60%)

GraphStoIHT 0.276 0.223 0.217 (0.666, 0.640) (0.667, 0.640) (154, 163) (8.93%, 23.20%)
DA-IHT 0.716 0.782 0.734 (0.865, 0.834) (0.865, 0.834) (95, 103) (9.59%, 63.20%)
GraphDA 0.856 0.881 0.864 (0.898, 0.885) (0.897, 0.885) (72, 80) (8.82%, 63.14%)

B.2 More results from MNIST Dataset

We show the results on image id {1, 2, 3, 6, 7, 8, 9}. To make the task
more challenging, these 7 images are the sparsest images (with

https://github.com/ludwigschmidt/cluster_approx

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
od

el

0.2

0.4

0.6

0.8

C
on

st
an

t
M

od
el

200 400 600 800

Samples Seen

0.2

0.4

0.6

0.8

G
au

ss
ia

n
M

od
el

200 400 600 800

Samples Seen
200 400 600 800

Samples Seen
200 400 600 800

Samples Seen

`1-RDA DA-IHT AdaGrad DA-GL DA-SGL GraphDA

200 400 600 800

Samples Seen
200 400 600 800

Samples Seen
200 400 600 800

Samples Seen

Figure 11: Seven handwritten digits 1, 2, 3, 6, 7, 8 and 9 (top row) and the F1 score as a function of samples seen (2nd to 4th row)

Table 4: Performance of Graph04

Method Prewt Recwt F1wt AUCwt ,w̄t Accwt ,w̄t Misswt ,w̄t NRwt ,w̄t
Adam 0.121 1.000 0.216 (0.884, 0.858) (0.884, 0.858) (77, 90) (100.0%, 100.0%)
ℓ1-RDA 0.361 0.961 0.513 (0.917, 0.896) (0.917, 0.896) (66, 79) (36.19%, 99.21%)
AdaGrad 0.376 0.961 0.528 (0.919, 0.889) (0.919, 0.889) (67, 81) (35.43%, 100.0%)
DA-GL 0.476 0.994 0.640 (0.942, 0.918) (0.941, 0.918) (54, 73) (26.03%, 100.0%)
DA-SGL 0.238 0.988 0.379 (0.931, 0.894) (0.931, 0.894) (65, 85) (53.31%, 100.0%)
StoIHT 0.207 0.203 0.204 (0.689, 0.639) (0.689, 0.639) (148, 160) (11.86%, 47.88%)

GraphStoIHT 0.439 0.245 0.299 (0.743, 0.699) (0.743, 0.699) (131, 143) (7.77%, 19.96%)
DA-IHT 0.780 0.801 0.788 (0.919, 0.898) (0.919, 0.899) (74, 82) (12.51%, 72.72%)
GraphDA 0.931 0.865 0.895 (0.939, 0.925) (0.939, 0.925) (56, 61) (11.30%, 72.80%)

the digits forming a connected component) selected from MNIST
dataset. The sparsity parameter s of DA-IHT and GraphDA is
chosen from {30, 32, . . . , 100} with step size 2. Figure 11 reports the
results.

B.3 More results from KEGG Pathways

This PPI network contains a total of 229 pathways. Each pathway
often involves a specific biological function, e.g. metabolism. We
restrict our analysis on 225 pathways (by removing 4 empty path-
ways), which contains 5,374 genes with 78,545 edges. These genes
form a connected graph. There exists an edge if two proteins (genes)
physically interact with each other [33]. Weights of edges stand
for the confidence of these interactions. There are 7,368 genes with
null values. We sample these null values from N(0, 1).

Due to the inferior performance of Adam, StoIHT and Graph-
StoIHT, we exclude them from experimental evaluation. Notice that
DA-GL and DA-SGL need groups as priors. However, the groups
(pathways) of this PPI network have overlapping features. To rem-
edy this issue, we simply replicate these overlapping features as
suggested in [25, 41], and by doing so, the two baselines are still

applicable. For these two non-convex methods, we choose the spar-
sity parameter from {40, 45, 50, 55, 60 }. We report the averaged
results from 20 trials in Figure 12.

`1-RDA DA-IHT AdaGrad DA-GL DA-SGL GraphDA

Figure 12:HSA05213 pathway detected by differentmethods.

The red nodes are the genes in HSA05213 while blue nodes

are the genes not in HSA05213. Results of each row are from

a specific trial (from trial 6 to trial 10).

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations
	3.2 Problem Definition

	4 Algorithm: GraphDA
	5 Experiments
	5.1 Datasets and evaluation metrics
	5.2 Baseline methods
	5.3 Results from Benchmark dataset
	5.4 Results from MNIST dataset
	5.5 Results from KEGG dataset

	6 Conclusion and Future Work
	7 Acknowledgements
	References
	A Reproducibility
	A.1 Implementation details
	A.2 Parameter tuning

	B More experimental results
	B.1 More results from Benchmark dataset
	B.2 More results from MNIST Dataset
	B.3 More results from KEGG Pathways

