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Abstract
Stochastic optimization algorithms update models
with cheap per-iteration costs sequentially, which
makes them amenable for large-scale data anal-
ysis. Such algorithms have been widely studied
for structured sparse models where the sparsity
information is very specific, e.g., convex sparsity-
inducing norms or `0-norm. However, these
norms cannot be directly applied to the problem
of complex (non-convex) graph-structured spar-
sity models, which have important application
in disease outbreak and social networks, etc. In
this paper, we propose a stochastic gradient-based
method for solving graph-structured sparsity con-
straint problems, not restricted to the least square
loss. We prove that our algorithm enjoys a lin-
ear convergence up to a constant error, which is
competitive with the counterparts in the batch
learning setting. We conduct extensive experi-
ments to show the efficiency and effectiveness of
the proposed algorithms.

1. Introduction
Structured sparse learning models have received increasing
attention. They can be formulated as follows

min
x∈M

F (x), F (x) :=
1

n

n∑
i=1

fi(x). (1)

Here, each fi(x) is convex and differentiable and the struc-
tured sparsity is reflected by the constraint set M ⊆ Rp
on x. Typically, one can encode the sparsity by introduc-
ing sparsity-inducing penalties such as `1-norm (Tibshirani,
1996; Chen et al., 2001), `1/`q mixed norms (Turlach et al.,
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2005; Yuan & Lin, 2006) and more structured norms built
on either disjoint or overlapping groups of variables (Bach
et al., 2012b; Jenatton et al., 2011; Obozinski & Bach, 2016;
Morales et al., 2010). Such models of sparsity-inducing
penalties are often convex and can be solved by convex
optimization algorithms (Bach et al., 2012a).

There is a wide range of significant application, including
the search of connected subgraphs in networks, where the
constraint setM cannot be encoded by sparsity-inducing
norms. Notable application examples include disease out-
break as a connected cluster (Arias-Castro et al., 2011; Qian
et al., 2014; Aksoylar et al., 2017), and social events as
connected dense subgraphs (Rozenshtein et al., 2014). To
capture these complex graph structures such as trees and
connected graphs, recent works by Baraniuk et al. (2010)
and Hegde et al. (2014; 2016; 2015b) have proposed to
use structured sparsity model M to define allowed sup-
ports {S1, S2, . . . , Sk} where M can be represented by
M(M) = {x : supp(x) ⊆ Si, for some Si ∈ M}. These
complex models are non-convex and (batch) gradient de-
scent algorithms involve a projection operator P(·,M(M))
which is usually NP-hard. In a series of seminal work,
Hegde et al. (2015b; 2016; 2015a) used two approximated
projections (head and tail) without sacrificing too much pre-
cision. However, their work only focused on the least square
loss, and computing full gradient per iteration resulted in
expensive per-iteration cost O(mp) if m is the number of
examples and p is the data dimension. This largely limits its
practical application to big data setting where typically the
data is contaminated by non-Gaussian noise and the data
volume is huge (i.e., m or/and p is very large). Therefore, it
is desirable to develop efficient optimization algorithms for
graph-structured sparsity constrained problems scalable to
large-scale data.

Stochastic optimization such as stochastic gradient descent
(SGD) has become a standard tool for solving large-scale
convex and non-convex learning problems (e.g., Bach &
Moulines (2013); Bousquet & Bottou (2008); Jin et al.
(2017); Kingma & Ba (2014); Li & Orabona (2018); Rakhlin
et al. (2012); Shamir & Zhang (2013); Yang & Lin (2015);
Ying & Zhou (2017; 2006)). SGD-type algorithms have a
cheap per-iteration computation of the gradient over one or
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a few training examples, which makes them amenable for
large-scale data analysis. Along this research line, SGD-
type algorithms for sparse models have been proposed in-
cluding stochastic proximal gradient methods (Rosasco
et al., 2014; Duchi et al., 2011) and stochastic gradient
hard thresholding (Nguyen et al., 2017; Zhou et al., 2018a;
Murata & Suzuki, 2018; Shen & Li, 2017; Liu et al., 2017).
However, these algorithms cannot address the important
case of complex (non-convex) graph-structured sparsity con-
straint problems.

In this paper we leverage the recent success of SGD algo-
rithms for non-convex problems and propose an efficient
stochastic optimization algorithm for graph-structured spar-
sity constraint problems. In particular, we use the struc-
ture sparsity modelM(M) to capture more complex graph-
structured information of interest. Our main contributions
can be summarized as follows:

• We propose a stochastic gradient-based algorithm for
solving graph-structured sparsity constraint problems. To
our best knowledge, our work is the first attempt to pro-
vide stochastic gradient descent-based algorithm for graph-
structured sparsity constraint problems.

• The proposed algorithm enjoys linear convergence prop-
erty under proper conditions.1 It is proved applicable to
a broad spectrum of loss functions. Specifically, for the
least square loss, it enjoys a linear convergence rate which
is competitive to the algorithm proposed in Hegde et al.
(2016). For the logistic loss, we show that it also satisfies
the linear convergence property with high probability. Our
proofs could be easily applied to other types of projections.

•We conduct extensive experiments to validate the pro-
posed stochastic algorithm. In particular, we focus on two
applications: graph sparse linear regression and graph logis-
tic regression on breast cancer data. Our experiment results
show that the proposed stochastic algorithm consistently
outperforms the deterministic ones.

Outline. We organize the rest of the paper as follows.
In Section 2, we introduce the notations, definitions and
key assumptions. Our proposed algorithm is presented
in Section 3. Section 4 provides the theoretical analy-
sis of the algorithm. Numerical experiments and discus-
sion are respectively in Section 5 and 6. Due to the
limited space, all of our formal proofs and further experi-
ment results are provided in the Supplementary Material.
The source code and datasets are accessible at: https:
//github.com/baojianzhou/graph-sto-iht.

1Linear convergence up to a tolerance error.

2. Preliminary
Notation. We use boldface letters, e.g., X to denote
matrices. The boldface lower-case letters, e.g., x,y are
column vectors. The upper-case letters, e.g., H,T, S stand
for subsets of [p] := {1, 2, . . . , p}. XS ∈ R|S|×p is the
submatrix by keeping rows only in set S. Given the standard
basis {ei : 1 ≤ i ≤ p} of Rp, we also use H,T, S to
represent subspaces. For example, the subspace induced by
H is the subspace defined as span{ei : i ∈ H}. We will
clarify the difference only if confusion might occur. The
restriction of x on S is the vector xS such that i-th entry
(xS)i = xi if i ∈ S; otherwise 0. We denote the support
of x as supp(x) := {i : xi 6= 0}. We use ‖x‖ to denote `2

norm of x. The set complement is defined as Sc = [p]\S.

Definition 1 (Subspace model (Hegde et al., 2016)). Given
the space Rp, a subspace model M is defined as a family
of linear subspaces of Rp: M = {S1, S2, . . . , Sk, . . . , },
where each Sk is a subspace of Rp. The set of corresponding
vectors in these subspaces is denoted as

M(M) = {x : x ∈ V, for some V ∈M}. (2)

Equation (2) is general enough to include many sparse
models. For example, the s-sparse set M(Ms) = {x :
|supp(x)| ≤ s} (Nguyen et al., 2017; Yuan et al., 2018;
Jain et al., 2014; Bahmani et al., 2013), where Ms contains
subspaces spanned by s different standard basis vectors, i.e.,
Ms = {span{ei1 , ei2 , . . . , eis} : {i1, i2, . . . , is} ⊆ [p]}.
Although the proposed algorithm and theorems apply to
any M which admits efficient projections, in this paper, we
mainly consider graph-structured sparsity constraint models
such as the weighted graph model in Hegde et al. (2015b).

Definition 2 (Weighted Graph Model (Hegde et al., 2015b)).
Given an underlying graph G = (V,E) defined on the
coefficients of the unknown vector x, where V = [p] and
E ⊆ V × V, then the weighted graph model (G, s, g, C)-
WGM can be defined as the following set of supports

M ={S : |S| ≤ s, there is an F ⊆ V with

VF = S, γ(F ) = g, and w(F ) ≤ C},

where C is the budget on weight of edges w, g is the number
of connected components of F , and s is the sparsity.

(G, s, g, C)-WGM captures a broad range of graph struc-
tures such as groups, clusters, trees, and connected sub-
graphs. This flexibility requires an efficient projection oper-
ator ontoM(M), i.e., P(·,M(M)) : Rp → Rp defined as

P(x,M(M)) = arg min
y∈M(M)

‖x− y‖2. (3)

The above operator is crucial for projected gradient descent-
based methods, but to solve the operator is NP-hard in gen-
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eral. To explore (3), one needs to solve the following equiv-
alent minimization problem

min
y∈M(M)

‖x− y‖2 ⇔ min
S∈M
‖x− P(x, S)‖2.

Since P(x, S) is an orthogonal projection operator that
projects x onto subspace S, by projection theorem, it always
has the following property

‖x‖2 − ‖P(x, S)‖2 = ‖x− P(x, S)‖2.
By adding minimization to both sides with respect to sub-
space S, we obtain

min
S∈M

{
‖x‖2 − ‖P(x, S)‖2

}
= min
S∈M
‖x− P(x, S)‖2

‖x‖2 + max
S∈M
‖P(x, S)‖2 = min

S∈M
‖x− P(x, S)‖2. (4)

The above observations lead to a key insight that the NP-
hard problem (3) can be solved either by maximizing
‖P(x, S)‖2 or by minimizing ‖x − P(x, S)‖2 over S. In-
stead of minimizing or maximizing these two squared norms
over S exactly, Hegde et al. (2015a;b) turned to approxi-
mated algorithms, and gave two important projections—
head projection and tail projection.
Assumption 1 (Head Projection (Hegde et al., 2016)). Let
M and MH be the predefined subspace models. Given
any vector x, there exists a (cH,M,MH)-Head-Projection
which is to find a subspace H ∈MH such that

‖P(x, H)‖2 ≥ cH ·max
S∈M
‖P(x, S)‖2, (5)

where 0 < cH ≤ 1. We denote P(x, H) as P(x,M,MH).
Assumption 2 (Tail Projection (Hegde et al., 2016)). Let
M and MT be the predefined subspace models. Given any
vector x, there exists a (cT ,M,MT )-Tail-Projection which
is to find a subspace T ∈MT such that

‖P(x, T )− x‖2 ≤ cT · min
S∈M
‖x− P(x, S)‖2, (6)

where cT ≥ 1. We denote P(x, T ) as P(x,M,MT ).

Intuitively, head projection keeps large magnitudes while
tail projection discards small magnitudes. Take Ms (a
complete graph) as an example. Head projection is
to find subspace H = span{ei1 , ei2 , . . . , eis} where
{i1, i2, . . . , is} ⊆ [p] is the set of indices that keeps the
largest s components of x, i.e, |xi1 | ≥ |xi2 | ≥ · · · ≥ |xis |.
As (3) could have multiple solutions, we could haveH 6= T ,
but we must have ‖x− xH‖ = ‖x− xT ‖.
Definition 3 ((α, β,M(M))-RSC/RSS). We say a differen-
tiable function f(·) satisfies the (α, β,M(M))-Restricted
Strong Convexity (RSC)/Smoothness (RSS) property if there
exist positive constants α and β such that

α

2
‖x− y‖2 ≤ Bf (x,y) ≤ β

2
‖x− y‖2, (7)

for all x,y ∈ M(M), where Bf (x,y) is the Bregman di-
vergence of f , i.e.,Bf (x,y) = f(x)−f(y)−〈∇f(y),x−
y〉. α and β are strong convexity parameter and strong
smoothness parameter respectively.

RSC/RSS property was firstly introduced in Agarwal et al.
(2012)2. Since it captures sparsity of many functions, it
has been widely used (e.g., Jain et al. (2014); Yuan et al.
(2018); Elenberg et al. (2018); Johnson & Zhang (2013);
Shen & Li (2017); Zhou et al. (2018a); Nguyen et al. (2017);
Zhou et al. (2018b)). For example, if f is the least square
loss, i.e., f(x) = ‖Ax− y‖2, then RSC/RSS property can
be reduced to the canonical subspace Restricted Isometry
Property (RIP) (Candes & Tao, 2005). Next, we characterize
the property of F and each fi of (1) in Assumption 3.

Assumption 3. Given the objective function F (x) in (1),
we assume that F (x) satisfies α-RSC in subspace model
M(M⊕MH ⊕MT ). Each function fi(x) satisfies β-RSS
inM(M⊕MH⊕MT ), where⊕ of two models M1 and M2

is defined as M1 ⊕M2 := {S1 ∪ S2 : S1 ∈M1, S2 ∈M2}.

3. Algorithm: GRAPHSTOIHT

Algorithm 1 GRAPHSTOIHT
1: Input: ηt, F (·),M,MH,MT
2: Initialize: x0 such that supp(x) ∈M and t = 0
3: for t = 0, 1, 2, . . . do
4: Choose ξt from [n] with probability Pr(ξt)
5: bt = P(∇fξt(xt),M⊕MT ,MH)
6: xt+1 = P(xt − ηtbt,M,MT )
7: end for
8: Return xt+1

The proposed algorithm is named GRAPHSTOIHT pre-
sented in Algorithm 1, a stochastic-based method for graph-
structured sparsity problems. Initially, x0 = 0 and t = 0.
At each iteration, it works as the following three steps:

• Step 1: in Line 4, it randomly selects ξt from [n] with
probability mass function Pr(ξt), that is, the current loss
fξt(·) has been chosen with probability Pr(ξt);

• Step 2: in Line 5, the head projection inputs the gra-
dient of fξt(x) and outputs the projected vector bt so that
supp(bt) ∈M(MH);

• Step 3: in Line 6, the next estimated xt+1 is then updated
by using the tail projection.

The algorithm repeats the above three steps until stop condi-
tion is satisfied. The difference between GRAPHSTOIHT
and STOIHT (Nguyen et al., 2017), the latter of which is

2This property is related with the theory of paraconvex-
ity (Van Ngai & Penot, 2008) as pointed out by Agarwal et al.
(2012).
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essentially a stochastic projected gradient descent, is two-
fold:

1) instead of directly using the gradient∇fξt(·) at each iter-
ation as STOIHT did, GRAPHSTOIHT uses a thresholded
gradient. Thresholding ∇fξt(·) at the first stage could be
helpful under sparse setting, because most nonzero entries
of ∇fξt(·) are irrelevant.

2) instead of projecting onM(Ms) as STOIHT did, the tail
projection projects each estimation onto graph-structured
subspacesM(MT ).

We call a batch version ( n = 1) of this algorithm as
GRAPHIHT, where we simply apply the head and tail pro-
jection to AS-IHT in Hegde et al. (2016) by considering a
general loss function.

Time complexity Analysis. Due to the NP-hardness of
the projection, there is a trade-off between the time cost
and the quality of projection. The time complexity of two
projections depends on the graph size p and the number of
edges |E|. As proved in Hegde et al. (2015b), the running
time of both head projection and tail projection is bounded
by O(|E| log3(p)). If the graph is sparse as common in
real-world applications, i.e., |E| = O(p), two projections
have nearly-linear time complexity: O(p log3(p)) with re-
spect to the feature dimension p. Hence, per-iteration cost
O(p log3(p)), is still cheaper than that of the deterministic
GD algorithms GRAPHIHT in which the computation of
the full gradient will be of cost O(np).

4. Convergence Analysis of GRAPHSTOIHT
In this section, firstly we give the convergence analysis
of GRAPHSTOIHT by characterizing the estimation error
between xt+1 and x∗, i.e, ‖xt+1 − x∗‖, where x∗ is an
optimal solution of (1). Then we analyze two commonly
used objective functions and prove our algorithm achieves
a linear convergence up to a constant error. Our analysis is
applicable not only to graph-structured sparsity model but
also to any other head and tail projection.

We denote ξ[t] = (ξ0, ξ1, . . . , ξt) as the history of stochastic
process ξ0, ξ1, . . . up to time t, and all random variables ξt
are independent of each other. Define the inverse condition
number µ := α/β. To simplify the analysis, we define the
probability mass function Pr(ξt = i) = 1/n, 1 ≤ i ≤ n.
Before presenting our main Theorem 1, let’s take a look at
the following key lemma.

Lemma 1. If each fξt(·) and F (x) satisfy Assumption 3
and, given head projection model (cH,M⊕MT ,MH) and
tail projection model (cT ,M,MT ), then we have the fol-
lowing inequality

Eξt‖(xt − x∗)Hc‖ ≤
√

1− α2
0Eξt‖xt − x∗‖+ σ1, (8)

where

σ1 =
(β0

α0
+

α0β0√
1− α2

0

)
Eξt‖∇Ifξt(x∗)‖,

H = supp(P(∇fξt(xt),M⊕MT ,MH)),

α0 = cHατ −
√
αβτ2 − 2ατ + 1, β0 = (1 + cH)τ,

I = arg max
S∈M⊕MT ⊕MH

Eξt‖∇Sfξt(x∗)‖, and τ ∈ (0, 2/β).

Inequality (8) means that the head projection always ex-
cludes a small fraction of the residual vector xt − x∗ at
each iteration. That is to say, most of the large magnitudes
in xt−x∗ are captured by the head projection. More specifi-
cally, the head projection thresholds small magnitude entries
of ∇fξt(xt) to zeros. These small magnitude entries could
lead the algorithm to a wrong direction. When F (x) is the
least square loss, Lemma 1 here is similar to Lemma 13
in Hegde et al. (2016). However, there are two important
differences: 1) our Lemma 1 can be applied to any functions
that satisfy Assumption 3 above, while the RIP condition
used in Hegde et al. (2016) can be only applied to the least
square loss; 2) since each fξt(x) is not strongly convex, the
proof in Hegde et al. (2016) cannot be directly used. Instead,
we use co-coercivity in Nguyen et al. (2017) and then obtain
the main theorem below.

Theorem 1. Let x0 be the start point of Algorithm 1. If
we choose a constant learning rate with ηt = η and use
Lemma 1, then the solution xt+1 of Algorithm 1 satisfies

Eξ[t]‖xt+1 − x∗‖ ≤ κt+1‖x0 − x∗‖+
σ2

1− κ, (9)

where
κ = (1 + cT )

(√
αβη2 − 2αη + 1 +

√
1− α2

0

)
,

σ2 = σ1 + ηEξt‖∇Ifξt(x∗)‖, and η, τ ∈ (0, 2/β).

Theorem 1 shows that Algorithm 1 still possibly enjoys lin-
ear convergence even if the full gradient is not available.
In order to make more detailed analysis of Theorem 1, we
call κ in (9) the contraction factor. A natural question to
ask is: under what condition can we get an effective con-
traction factor, κ, i.e., κ < 1. When κ < 1, the estimation
error is dominated by the term σ2

1−κ . Suppose the random
distribution of ξt is uniform and the approximation factor
of the head projection cH can be arbitrarily boosted close to
1. Taking η = 1/β, in order to get an effective contraction
factor, κ < 1, the inverse of the condition number µ and tail
projection factor cT need to satisfy

κ = (1 + cT )(1 + 2
√
µ)
√

1− µ < 1. (10)

To be more specific, if κ is a function of η, then it takes
minimum at η = 1/β. By letting η = 1/β, then κ is
simplified as (1 + cT )(

√
1− µ+

√
1− α2

0). Furthermore,



Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization

α0 is a concave function with respect to τ (recall that τ is a
free parameter in (0, 2/β)), and then we have its maximum
at τ = 1

β (1 + cH
√

β−α
β−c2Hα

) after calculation. By taking

cH → 1−, we present κ as (1 + cT )(1 + 2
√
µ)
√

1− µ
One of the assumptions of (10) is that cH can be arbitrarily
close to 1. One can boost the head projection by using the
method proposed in Hegde et al. (2016). In our experiment,
we find that it is not necessary to boost the head projection
because executing the head projection once is sufficient
enough to obtain good performance. In the remainder of the
section, we consider two popular loss functions to discuss
the conditions of getting effective contraction factors.

Graph sparse linear regression. Given a design matrix
A ∈ Rm×p and corresponding observed noisy vector y ∈
Rm that are linked via the linear relationship

y = Ax∗ + ε, (11)

where ε ∼ N (0, σ2I). The graph sparse linear regression is
to estimate the underlying sparse vector x∗. The underlying
graph G(V,E) is defined on x∗. For example, supp(x∗)
induces a connected subgraph with s nodes, showcased in
Figure 1 in the experiment section. To estimate x∗, naturally
we consider the least square loss and formulate it as

arg min
supp(x)∈M(M)

F (x) :=
1

n

n∑
i=1

n

2m
‖ABix− yBi‖2, (12)

where m observations have been partitioned into n blocks,
B1, B2, . . . , Bn. Each block Bi is indexed by i with block
size b = m/n. In Corollary 1, we show that it is possible to
get a linear convergence rate under RSC/RSS assumption.

Corollary 1. If F (x) in (12) satisfies the α-RSC property
and each fi(x) = n

2m‖ABix− yBi‖2 satisfies the β-RSS
property, then we have the following condition

α

2
‖x‖2 ≤ 1

2m
‖Ax‖2 ≤ β

2
‖x‖2.

Let the strong convexity parameter α = 1 − δ and strong
smoothness parameter β = 1 + δ, where 0 < δ < 1. The
condition of effective contraction factor is as the following

(1 + cT )
(√ 2

1 + δ
+

2
√

2(1− δ)
1 + δ

)√
δ < 1.

Table 1 gives a contrast of contraction factor κ in our method
and in Hegde et al. (2016). Both conditions are obtained
by letting cH → 1−. Table 1 shows that κ of the two
algorithms could be effective if δ → 0. By using a suffi-
ciently large number of observations m, we always have
δ → 0. According to the preceding analysis, GRAPHIHT
uses a constant learning rate η = 1 while GRAPHSTOIHT

Table 1. κ of two algorithms

Algorithm κ

GRAPHIHT (1 + cT )
(√

δ + 2
√

1− δ
)√

δ

GRAPHSTOIHT (1 + cT )
(√

2
1+δ +

2
√

2(1−δ)
1+δ

)√
δ

uses the learning rate η = 1/(1 + δ). However, the dif-
ference between the two learning rates disappears when
δ → 0. To be more specific, κ of GRAPHIHT is controlled
by O(

√
δ · 2(1 + cT )) while for GRAPHSTOIHT, κ is con-

trolled by O(
√
δ · 3
√

2(1 + cT )). Consequently, the con-
traction factor κ of GRAPHSTOIHT is competitive with that
of GRAPHIHT while GRAPHSTOIHT has the advantage of
cheaper per-iteration cost O(mp/n), if the size of blocks
n is large, compared to O(mp) of GRAPHIHT. To obtain
κ < 1, δ ≤ 0.0527 for GRAPHIHT while δ ≤ 0.0142 for
GRAPHSTOIHT. The gap between the two κ is mainly due
to the randomness introduced in our algorithm.

The error term σ2 in Equation (9) mainly depends on b
and σ. The gradient of fξt at x∗ is A>Bξt εBξt/b. As
shown in Nguyen et al. (2017), it can be bounded as
C
√
σ2|I| log p/b, where C is a constant independent of

b and σ.

Though GRAPHSTOIHT needs more observations than
GRAPHIHT theoretically, our experiment results demon-
strate that GRAPHSTOIHT uses less observations than
GRAPHIHT to estimate x∗ accurately under the same con-
dition. Such kind of interesting experiment phenomenon is
reported in Nguyen et al. (2017) but for sparsity constraint.

Graph logistic regression. Given a dataset {ai, yi}mi=1

({ai}mi=1 is a set of i.i.d random vectors), the graph logistic
regression is formulated as the following problem

arg min
supp(x∗)∈M(M)

F (x) :=
1

n

n∑
i=1

fi(x), (13)

where each fi(x) is defined as

fi(x) =
n

m

m/n∑
j=1

[
log(1 + exp (−yija

T
ijx))

]
+
λ

2
‖x‖2. (14)

Here λ is the regularization parameter. Again we divide [m]
into n blocks, i.e., B1, B2, . . . , Bn and assume each block
size b is the same, i.e., b = m/n. Problem (13) has many im-
portant applications. For example, in its application to breast
cancer classification based on gene mirco-array dataset and
gene-gene network, each ai is the i-th sample representing
the gene expression records of patient i, and yi is associated
label with value -1 or 1. yi = 1 means metastatic growth on
patient i while yi = −1 non-metastatic growth on patient
i. Assume that we have more prior information such as
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gene-gene network, the goal here is to minimize the objec-
tive function F (x) meanwhile to find a connected subgraph
induced by supp(x) which is highly relevant with breast
cancer-related genes. This kind of application is theoreti-
cally based on the following corollary.

Corollary 2. Suppose we have the logistic loss, F (x)
in (13) and each sample ai is normalized, i.e., ‖ai‖ = 1.
Then F (x) satisfies λ-RSC and each fi(x) in (14) satisfies
(α+ (1 + ν)θmax)-RSS. The condition of getting effective
contraction factor of GRAPHSTOIHT is as the following

λ

λ+ n(1 + ν)θmax/4m
≥ 243

250
, (15)

with probability 1 − p exp (−θmaxν/4), where θmax =

λmax(
∑m/n
j=1 E[aija

T
ij

]) and ν ≥ 1. E[aija
T
ij

] is the expec-
tation with respect to the random variable aij .

Given a sufficiently large number of observations m and a
suitable n, it is still possible to find a bound such that the
inequality (15) is valid. In Bahmani et al. (2013), they
show when µ > 1/(1 + (1+ν)θmax

4λ ), it is sufficient for
GRASP (Bahmani et al., 2013) to get a linear convergence
rate. Our corollary shares the similar spirit.

5. Experiments
We conduct experiments on both synthetic and real datasets
to evaluate the performance of GRAPHSTOIHT3. We con-
sider two applications, graph sparse linear regression and
breast cancer metastatic classification. All codes are written
in Python and C language. All experiments are tested on 56
CPUs of Intel Xeon(R) E5-2680 with 251GB of RAM.

5.1. Graph sparse linear regression

Experimental setup. The graph sparse linear regres-
sion is to recover a graph-structured vector x∗ ∈ Rp by
using a Gaussian matrix A ∈ Rm×p, and the observation
vector y where y is measured by y = Ax∗ + ε as defined
in (11). The entries of the design matrixA are sampled from
N (0, 1/

√
m) independently and nonzero entries of x∗ from

N (0, 1) independently for the simulation study. ε is poten-
tially a Gaussian noise vector and ε = 0 the noiseless case.
We mainly follow the experimental settings in Nguyen et al.
(2017). All results are averaged on 50 trials of trimmed
results by excluding the best 5% and the worst 5%. All
methods terminate when ‖Axt+1 − y‖ ≤ 10−7 (corre-
sponding to convergence ) or t/n ≥ 500 (corresponding
to the maximum number of epochs allowed). For GRAPH-
STOIHT, one epoch contains n iterations. We recall that
A has been partitioned into n blocks with block size b.

3Implementation details of the head and tail projection are
provided in Supplementary material.

We say x∗ is successfully recovered if the estimation error
‖xt+1 − x∗‖ ≤ 10−6.

(a) s = 20 (b) s = 28

Figure 1. Two simulated graphs. Subgraphs (colored nodes and
edges) are generated by random walk. Each node vi is associated
with xi. Colored-face nodes have values sampled from N (0, 1)
while white-face nodes have values 0.0.

To simulate a graph structure on x∗ ∈ Rp that mimics
realistic subgraph patterns (e.g., malicious activities) in a
network (Yu et al., 2016), we fix p = 256 and generate its s
nonzero entries by using random walk (Lovász et al., 1993)
on a 16 × 16 grid graph so that ‖x∗‖0 forms a connected
subgraph. Each edge has unit weight 1.0. Specifically, the
procedure of random walk follows three main steps: 1)
select an initial node (we choose the center of the grid); 2)
move to its neighbor with probability 1/d(vt), where d(vt)
is the degree of node vt; 3) repeat 2) until s different nodes
have been visited. Figure 1 presents two random walks of
s = 20 (on the left) and s = 28 (on the right).
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Figure 2. Choice of b and η. The left part illustrates the estimation
error as a function of epochs for different choices of b. When
b = 180, it degenerates to GRAPHIHT (the dashed line). The
right part shows the estimation error as a function of iterations for
different choices of η.

Choice of b and η. We first consider how block size b and
learning rate η affect the performance of GRAPHSTOIHT.
We fix the sparsity s = 8 and n = 180 and try different
b from set {1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 180}. When
b = 1, only 1 observation has been used at each iteration;
when b = 180, all measurements used, corresponding to
GRAPHIHT. Results are presented on the left of Figure 2.
In order to successfully recover x∗ within 30 epochs, the
block size should be at least s. A potential explanation is
that, since b < s, the Hessian matrix of fξt , i.e.,A>BξtABξt

is not positive definite. Thus it is hard to converge to x∗

in a short time. Another interesting finding is that GRAPH-
STOIHT converges faster than GRAPHIHT when block size
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is suitable, say between 32 and 64. As shown in Appendix D,
the run time is dominated by the time of calculating the gra-
dient when p and m are both increasing.

To further explore learning rate η, we use the similar set-
ting (s = 8) above except b = 8,m = 80 (when m = 80,
GRAPHIHT successfully recovers x∗ with high probabil-
ity as shown in Figure 4 (a). We consider 16 different η
from set {0.1, 0.2, . . . , 1.5, 1.6}. The right part of Figure 2
shows that GRAPHSTOIHT converges even when the learn-
ing rate is relatively large say η ≥ 1.5. It means we can
choose relatively larger learning rate so that the algorithm
can achieve optimal solution faster. By Theorem 1, the
optimal learning rate η is chosen by η = 1/β, so a po-
tential explanation is that the strong smoothness parameter
β is relatively small due to the head projection inequality
‖∇Hfξt(xt+1)−∇Hfξt(x∗)‖ ≤ β‖xt+1 − x∗‖.
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Figure 3. Robustness to noise ε. The number of observations re-
quired is a function of different block sizes.

Robustness to noise ε. To explore the performance under
noise setting, we consider two noise conditions: ‖ε‖ = 0.0
(without noise) and ‖ε‖ = 0.5, where ε ∼ N (0, I). When
‖ε‖ = 0.5, the sparse vector is successfully recovered if
‖xt+1 − x∗‖ ≤ 0.5. We try the block sizes b from the set
{2, 4, 6, 8, 10, . . . , 62, 64}, and then measure the number
of observations m required by the algorithms (so that x∗

can be successfully recovered with probability 1.0). The
minimum number of observations is required such that the
error ‖xt+1−x∗‖ ≤ 10−6 for ‖ε‖ = 0 and ‖xt+1−x∗‖ ≤
0.5 for ‖ε‖ = 0.5 in all trials. The results are reported in
Figure 3. We can see both GRAPHSTOIHT and STOIHT
are robust to noise. In particular, when block size is between
4 and 8, the number of observations required is the least
for our method. Compared with the noiseless (the left), the
performance of noise case (the right) degrades gracefully.

Results from synthetic dataset. We explore the per-
formance of GRAPHSTOIHT on the probability of recov-
ery, which is defined as the total number of successful tri-
als divided by the total number of trimmed trials. Recall
that x∗ is successfully recovered if the estimation error
‖xt+1 − x∗‖ ≤ 10−6. We compare GRAPHSTOIHT with
three baseline methods, i.e., Iterative Hard Thresholding
(IHT) (Blumensath & Davies, 2009), Stochastic Iterative
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Figure 4. Probability of recovery on synthetic dataset. The proba-
bility of recovery is a function of number of observations m.

Hard Thresholding (STOIHT) (Nguyen et al., 2017), and
GRAPHIHT (Hegde et al., 2016). We consider four differ-
ent sparsity levels, i.e., s ∈ {8, 20, 28, 36}. For each trial,
x∗ is generated by random walk. To be consistent with
the setting in Nguyen et al. (2017), the block size is set by
b = min(s,m) with the number of observations m chosen
from {5, 10, . . . , 245, 250}. All of the four methods, includ-
ing ours, use a constant learning rate η = 1. Our method
uses less observations to successfully recover x∗ due to
the randomness (compared with IHT and GRAPHIHT) and
the graph-structured projection (compared with IHT and
STOIHT) as shown in Figure 4. It indicates that GRAPH-
STOIHT outperforms the other three baselines in terms of
probability of recovery. It also shows that SGD-based meth-
ods are more stable than batch methods with respect to small
perturbation of data as recently shown by the works of Hardt
et al. (2016) and Charles & Papailiopoulos (2018).
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Figure 5. Probability of recovery on three 50× 50 resized real im-
ages: (a) Background, (b) Angio, and (c) Text (Hegde et al., 2015b).
The probability of recovery is a function of the oversampling ratio
m/s.

Results from three real-world images. In order to fur-
ther demonstrate the merit of GRAPHSTOIHT, we compare
it with another three popular methods: NIHT (Blumen-
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Table 2. AUC score ± standard deviation on the breast cancer dataset.
Folding ID `1-PATHWAY `1/`2-PATHWAY `1-EDGE `1/`2-EDGE IHT STOIHT GRAPHIHT GRAPHSTOIHT
Folding 00 0.705±0.09 0.715±0.07 0.726±0.07 0.724±0.07 0.726±0.07 0.731±0.06 0.716±0.02 0.718±0.03
Folding 01 0.665±0.11 0.718±0.03 0.688±0.04 0.703±0.07 0.680±0.07 0.683±0.07 0.710±0.06 0.704±0.05
Folding 02 0.640±0.07 0.729±0.06 0.714±0.04 0.717±0.04 0.716±0.06 0.723±0.06 0.724±0.07 0.720±0.08
Folding 03 0.691±0.05 0.705±0.05 0.720±0.05 0.722±0.04 0.699±0.05 0.703±0.05 0.687±0.04 0.687±0.04
Folding 04 0.680±0.05 0.690±0.05 0.705±0.06 0.721±0.05 0.694±0.05 0.695±0.06 0.687±0.05 0.688±0.03
Folding 05 0.648±0.07 0.694±0.04 0.658±0.06 0.683±0.07 0.671±0.07 0.671±0.07 0.675±0.07 0.712±0.05
Folding 06 0.682±0.04 0.733±0.04 0.701±0.05 0.701±0.06 0.712±0.07 0.733±0.06 0.742±0.06 0.741±0.06
Folding 07 0.674±0.04 0.682±0.07 0.695±0.04 0.704±0.03 0.711±0.08 0.704±0.07 0.725±0.07 0.714±0.08
Folding 08 0.686±0.06 0.705±0.06 0.696±0.07 0.691±0.07 0.724±0.07 0.720±0.07 0.703±0.03 0.729±0.03
Folding 09 0.671±0.07 0.690±0.07 0.660±0.05 0.687±0.03 0.712±0.06 0.712±0.06 0.703±0.06 0.704±0.06
Folding 10 0.693±0.09 0.735±0.09 0.706±0.10 0.718±0.06 0.701±0.08 0.717±0.09 0.710±0.08 0.707±0.07
Folding 11 0.669±0.04 0.697±0.07 0.711±0.05 0.704±0.05 0.707±0.05 0.706±0.04 0.733±0.06 0.733±0.06
Folding 12 0.670±0.05 0.716±0.06 0.703±0.05 0.701±0.03 0.714±0.06 0.715±0.07 0.711±0.07 0.711±0.08
Folding 13 0.678±0.07 0.688±0.04 0.703±0.04 0.697±0.04 0.699±0.06 0.701±0.06 0.703±0.04 0.715±0.05
Folding 14 0.653±0.02 0.700±0.02 0.703±0.03 0.692±0.03 0.695±0.04 0.699±0.04 0.721±0.06 0.721±0.06
Folding 15 0.663±0.07 0.682±0.07 0.697±0.08 0.687±0.07 0.724±0.07 0.712±0.06 0.725±0.07 0.716±0.07
Folding 16 0.687±0.07 0.720±0.04 0.697±0.06 0.729±0.06 0.721±0.05 0.723±0.05 0.719±0.04 0.715±0.04
Folding 17 0.684±0.05 0.703±0.05 0.677±0.07 0.716±0.05 0.712±0.04 0.712±0.04 0.730±0.03 0.720±0.04
Folding 18 0.660±0.06 0.714±0.06 0.675±0.08 0.685±0.08 0.713±0.06 0.706±0.06 0.735±0.05 0.735±0.05
Folding 19 0.694±0.02 0.692±0.04 0.727±0.05 0.713±0.04 0.719±0.02 0.703±0.03 0.725±0.05 0.715±0.05
Averaged 0.675±0.06 0.705±0.06 0.698±0.06 0.705±0.06 0.707±0.06 0.708±0.06 0.714±0.06 0.715±0.06

sath & Davies, 2010), COSAMP (Needell & Tropp, 2009),
GRAPHCOSAMP (Hegde et al., 2015b). We test all of
them on three 50 × 50 resized real images: Background,
Angio, and Text provided in Hegde et al. (2015b), where
the first two images have one connected component while
Text has four. NIHT and COSAMP have sparsity s as in-
put parameter. GRAPHSTOIHT shares the same head and
tail projection as GRAPHCOSAMP. The learning rates η
of IHT, STOIHT, GRAPHIHT and GRAPHSTOIHT are
tuned from the set {0.2, 0.4, 0.6, 0.8}, and the block sizes
b of STOIHT and GRAPHSTOIHT are tuned from the set
{m/5,m/10}. We tune b and η on an additional valida-
tion dataset with 100 observations. To clarify, the design
matrixA used here is Gaussian matrix, different from the
Fourier Matrix used in Hegde et al. (2015b). Our method
outperforms the others consistently.

5.2. Graph sparse logistic regression

To further test our method on real-world dataset, we apply
it to the breast cancer dataset in Van De Vijver et al. (2002),
which contains 295 training samples including 78 positives
(metastatic) and 217 negatives (non-metastatic). Each ai
in (13) is the training sample of patient i with dimension
p = 8, 141 (genes). Label yi = 1 if patient i has metastatic
growth; otherwise −1. We use the Protein-Protein Interac-
tion (PPI) network in Jacob et al. (2009)4. There are 637
pathways in this PPI network. We restrict our analysis on
3,243 genes (nodes) which form a connected graph with
19,938 edges. Due to lack of edge weights, all weights have
been set to 1.0. We fold the dataset uniformly into 5 subfolds
as done by Jenatton et al. (2011) to make comparison later.
All related parameters are tuned by 5-fold-cross-validation
on each training dataset. More experiment details are avail-
able in the Supplementary Material. We repeat the folding

4This network was originally proposed by Chuang et al. (2007).

strategy 20 times, and Table 2 reports AUC scores with
standard deviation.

Metastasis classification. We compare our algorithm
with the three aforementioned non-convex based meth-
ods and four `1/`2 mixed norm-based algorithms, `1-
PATHWAY, `1/`2-PATHWAY, `1-EDGE, and `1/`2-EDGE5.
`1-PATHWAY and `1/`2-PATHWAY use pathways as groups
while `1-EDGE and `1/`2-EDGE use edges as groups. On
average, GRAPHSTOIHT achieves 0.715 AUC score, the
highest among the eight methods.

Gene identification. We also investigate different num-
bers of breast cancer-related genes identified by each
method. Out of 25 breast cancer-related genes, GRAPH-
STOIHT finds 24% of them, more than GRAPHIHT (20%),
STOIHT (16%) and IHT (8%). The mixed norm-based
methods `1-PATHWAY, `1/`2-PATHWAY, `1-EDGE, and
`1/`2-EDGE find 16%, 8%, 12%, and 12% respectively.
Our method outperforms other methods in finding cancer-
related genes.

6. Conclusion and Future Work
In this paper, we have proposed GRAPHSTOIHT, a stochas-
tic gradient-based method for solving graph-structured spar-
sity constraint problems. We proved that it enjoys a linear
convergence property. Experimental evaluation shows our
method consistently outperforms other algorithms for both
graph sparse linear regression and graph logistic regression
on real-world datasets. In future, it would be interesting
to see if one can apply the variance reduction techniques
such as SAGA (Defazio et al., 2014) and SVRG (Johnson
& Zhang, 2013) to GRAPHSTOIHT.

5The code of these four methods is sourced from
http://cbio.ensmp.fr/˜ljacob/documents/
overlasso-package.tgz.

http://cbio.ensmp.fr/~ljacob/documents/overlasso-package.tgz
http://cbio.ensmp.fr/~ljacob/documents/overlasso-package.tgz
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A. Proofs
Before proving Lemma 1, we first prove Lemma 2, 3, 4, 5, 6. We prove the main Theorem 1 and three Corollaries after
proving Lemma 1. In the following proofs, given any M, M is the closure of M under taking subsets, which is defined as
M = {Ω : Ω ⊆ S, for some S ∈M}.
Lemma 2 (co-coercivity). If f is convex differentiable and satisfies the (α, β,M(M))-RSS/RSC property, then we have

‖∇Ωf(x)−∇Ωf(y)‖2 ≤ β〈x− y,∇f(x)−∇f(y)〉, (16)

where ‖x‖0 ∪ ‖y‖0 ⊆ Ω and Ω ∈M.

Proof. By the definition of (α, β,M(M))-RSS/RSC property, we have

Bf (x,y) := f(x)− f(y)− 〈∇f(y),x− y〉 ≤ β

2
‖x− y‖2.

Let x0 ∈M(M) be any fixed vector. We define a surrogate function ϕ(y) := f(y)−〈∇f(x0),y〉. ϕ is also β-smoothness
inM(M). To see this, notice that

Bϕ(x,y) = ϕ(x)− ϕ(y)− 〈∇ϕ(y),x− y〉
= f(x)− f(y)− 〈∇f(x0),x− y〉 − 〈∇f(y)−∇f(x0),x− y〉
= f(x)− f(y)− 〈∇f(y),x− y〉

= Bf (x,y) ≤ β

2
‖x− y‖2.

Since ∇ϕ(x0) = 0, ϕ gets its minimum at x0 . By using the above inequality on ϕ with x replaced by y − 1/β∇Ωϕ(y)
(noticing that ‖y − 1/β∇Ωϕ(y)‖0 ⊆ Ω), we get

ϕ(x)− ϕ(y)− 〈∇ϕ(y),x− y〉 ≤ β

2
‖x− y‖2

⇔ ϕ(y − 1

β
∇Ωϕ(y))− ϕ(y)− 〈∇ϕ(y),− 1

β
∇Ωϕ(y)〉 ≤ β

2
‖ − 1

β
∇Ωϕ(y)‖2

⇔ ϕ(x0) ≤ ϕ(y − 1

β
∇Ωϕ(y)) ≤ ϕ(y)− 1

2β
‖∇Ωϕ(y)‖2.

By using the definition of ϕ on the above inequality, we finally have

f(x0)− 〈∇f(x0),x0〉 ≤ f(y)− 〈∇f(x0),y〉 − 1

2β
‖∇Ωf(y)−∇Ωf(x0)‖2

⇔ f(x0) + 〈∇f(x0),y − x0〉+
1

2β
‖∇Ωf(y)−∇Ωf(x0)‖2 ≤ f(y)

⇔ 1

2β
‖∇Ωf(y)−∇Ωf(x0)‖2 ≤ f(y)− f(x0) + 〈∇f(x0),x0 − y〉 (*)

Let x0 = x. By adding two copies of (*) with x and y interchanged, we prove the lemma.

Remark 1. The proof of Lemma 2 mainly follows Nesterov (2013) where the function considered is convex differentiable
and has a Lipschitz continuous gradient in Rp. Instead of proving the property in Rp, we prove it in the subspace model
M(M). Similar uses of this property can be found in Nguyen et al. (2017); Shen & Li (2017). One should notice that this
co-coercivity property does not depend on the strong-convexity parameter α, i.e., α ≥ 0.

Lemma 3. For any convex differentiable function f satisfies (α, β,M(M))-RSS/RSC property with strongly convex
parameter α and strongly smoothness parameter β, we have the following inequalities

α‖x− y‖ ≤ ‖∇Ωf(x)−∇Ωf(y)‖ ≤ β‖x− y‖ (17)

where ‖x‖0 ∪ ‖y‖0 ⊆ Ω and Ω ∈M.
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Proof. Since f(x) satisfies (α, β,M(M))-RSS/RSC property, by using left inequality of (7) and exchanging x,y and
summing them together, we can get

α‖x− y‖2 ≤ 〈∇f(x)−∇f(y),x− y〉
= 〈∇Ωf(x)−∇Ωf(y),x− y〉 (*)
≤ ‖∇Ωf(x)−∇Ωf(y)‖ · ‖x− y‖,

where the first equality follows by ‖x‖0 ∪ ‖y‖0 ⊆ Ω and the second inequality follows by the Cauchy-Schwarz inequality.
Therefore, the LHS of inequality (16) is obtained by eliminating ‖x − y‖ on both sides(Notice that when x = y, two
inequalities stated in this lemma are trivially true). Furthermore, ‖∇Ωf(x)−∇Ωf(y)‖2 can be upper bounded as

‖∇Ωf(x)−∇Ωf(y)‖2 = ‖∇Ωf(x)−∇Ωf(y)‖2
≤ β〈∇f(x)−∇f(y),x− y〉
= β〈∇Ωf(x)−∇Ωf(y),x− y〉
≤ β‖∇Ωf(x)−∇Ωf(y)‖ · ‖x− y‖,

where the first inequality follows by Lemma 2. Hence, the RHS of (16) is obtained by eliminating ‖∇Ωf(x)−∇Ωf(y)‖
on both sides. We prove the lemma.

Lemma 4 ( Nguyen et al. (2017)). Let ξt be a discrete random variable defined on [n] and its probability mass function is
defined as Pr(ξt = i) := 1/n, which means the probability of ξt selects ith block at time t. For any fixed sparse vectors x,
y and 0 < τ < 2

β , we have

Eξt
∥∥∥x− y − τ(∇Ωfξt(x)−∇Ωfξt(y)

)∥∥∥ ≤√αβτ2 − 2ατ + 1‖x− y‖, (18)

where Ω be such set that ‖x‖0 ∪ ‖y‖0 ⊆ Ω and Ω ∈M.

Proof. We first try to obtain an upper bound Eξt‖x− y − τ(∇Ωfξt(x)−∇Ωfξt(y))‖2 as the following

Eξt
∥∥∥x− y − τ(∇Ωfξt(x)−∇Ωfξt(y)

)∥∥∥2

= ‖x− y‖2 − 2τEξt
〈
x− y,∇Ωfξt(x)−∇Ωfξt(y)

〉
+ τ2Eξt

∥∥∥∇Ωfξt(x)−∇Ωfξt(y)
∥∥∥2

= ‖x− y‖2 − 2τ
〈
x− y,Eξt

[
∇fξt(x)−∇fξt(y)

]〉
+ τ2Eξt‖∇Ωfξt(x)−∇Ωfξt(y)‖2

≤ ‖x− y‖2 − 2τ
〈
x− y,Eξt

[
∇fξt(x)−∇fξt(y)

]〉
+ τ2β

〈
x− y,Eξt

[
∇fξt(x)−∇fξt(y)

]〉
= ‖x− y‖2 + (τ2β − 2τ)

〈
x− y, F (x)− F (y)

〉
≤ (αβτ2 − 2ατ + 1)‖x− y‖2,

where the second equality uses the fact that ‖x‖0 ∪ ‖y‖0 ⊆ Ω, the first inequality follows from Lemma 2, the third equality
is obtained by using the fact that Eξt [∇fξt(x)−∇fξt(y)] = ∇F (x)−∇F (y) and the last inequality is due to the restricted
strong convexity of F (x) onM(M). We complete the proof by taking the square root of both sides and using the fact: for
any random variable X , we have (E[X])2 ≤ EX2.

Lemma 5 (Matrix Chernoff (Tropp (2012))). Consider a finite sequenceM1,M2, · · · ,Mr of d× d, independent, random,
self-adjoint matrices that satisfyMi � 0 and λmax(Mi) ≤ R almost surely. Let θmax = λmax(

∑r
i=1 E[Mi]). Then for

ν ≥ 0,

Pr
{
λmax

( r∑
i=1

Mi

)
≥ (1 + ν)θmax

}
≤ de θmaxR h(ν), (19)

where h(ν) = ν − (1 + ν) log(1 + ν).

Lemma 6. Given the matrix AT
Bi
ABi =

∑m/n
j=1 aija

T
ij

and ‖aij‖ = 1. ai1 ,ai2 , . . . are independent and random. The
matrix norm of AT

Bi
ABi can be bounded as ‖AT

Bi
ABi‖2 < (1 + ν)θmax with probability 1− p exp (−θmaxν/4), where

θmax = λmax(
∑n/m
j=1 E[aija

T
ij

]), and ν ≥ 1.
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Proof. LetMj = aija
T
ij

. Then the finite sequenceM1,M2, . . . ,Mm/n is independent, random, and self-adjoint matrices.
We write the matrix as a summation as the following

AT
BiABi =

m/n∑
j=1

aija
T
ij =

m/n∑
j=1

Mj .

Given ν ≥ 1, we know the fact that ν − (1 + ν) log(1 + ν) ≤ −ν log(1+ν)
2 . Furthermore, − log(1 + ν) ≤ − ν

1+ν , which

means ν − (1 + ν) log(1 + ν) ≤ −ν2

2(1+ν) . As ν
1+ν ≥ 1

2 , ν − (1 + ν) log(1 + ν) ≤ −ν4 . Therefore, we use inequality (19) of
Lemma 5 by replacing r with m/n and R with 1 ( by noticing that aija

T
ij

is normalized).

Pr
{
λmax

(m/n∑
j=1

Mj

)
≥ (1 + ν)θmax

}
≤ p exp (

θmax
R

(ν − (1 + ν) log(1 + ν)))

≤ p exp (
θmax
R

−ν
4

) = p exp (−θmaxν
4

).

In other words, the probability of Pr
{
λmax

(∑m/n
j=1 Mj

)
< (1 + ν)θmax

}
is greater than 1− p exp (− θmaxν4 ). We prove

the lemma.

Remark 2. Lemma 6 shows that the maximum eigenvalue of matrix A>BiABi can be upper bounded properly. Our
Corollary 2 depends on Lemma 6.

Lemma 1. Denote ξ[t] = (ξ0, ξ1, . . . , ξt) as the history of the stochastic process ξ0, ξ1, . . . , up to time t and all random
variables ξt are independent of each other. Define the probability mass function Pr(ξt = i) = 1/n, 1 ≤ i ≤ n. Given an
optimal solution x∗ ∈M(M), head projection model (cH,M⊕MT ,MH), tail projection model (cT ,M,MT ) and fξt(·)
and F (x) satisfies Assumption 3, then we have

Eξt‖(xt − x∗)Hc‖ ≤
√

1− α2
0Eξt‖xt − x∗‖+

(β0

α0
+

α0β0√
1− α2

0

)
Eξt‖∇Ifξt(x∗)‖, (20)

where

H := ‖P(∇fξt(xt),M⊕MT ,MH)‖0, α0 := cHατ −
√
αβτ2 − 2ατ + 1, β0 := (1 + cH)τ,

I := arg max
S∈M⊕MT ⊕MH

Eξt‖∇Sfξt(x∗)‖, and 0 < τ < 2/β.

Proof. Let rt = xt − x∗ and Ω := ‖rt‖0 ∈M⊕MT . The component Eξt‖∇Hfξt(xt)‖ can be lower bounded as

Eξt‖∇Hfξt(xt)‖ ≥ cHEξt max
S∈M⊕MT

‖∇Sfξt(xt)‖

= cHEξt max
S′∈M⊕MT

‖∇S′fξt(xt)‖

≥ cHEξt‖∇Ωfξt(x
t)‖

≥ cHEξt(‖∇Ωfξt(x
t)−∇Ωfξt(x

∗)‖ − ‖∇Ωfξt(x
∗)‖2)

≥ cH(‖∇ΩF (xt)−∇ΩF (x∗)‖ − Eξt|ξ[t−1]
‖∇Ωfξt(x

∗)‖2)

≥ cHα‖rt‖2 − cHEξt‖∇Ifξt(x∗)‖,

where the first inequality follows by the definition of the head projection and the last inequality follows by (16) using
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(α, β,M⊕MT ⊕MH)-RSC/RSS property. The component ‖∇Hfξt(xt)‖ can also be upper bounded as

Eξt‖∇Hfξt(xt)‖ ≤
1

τ
Eξt
∥∥∥τ(∇Hfξt(xt)−∇Hfξt(x∗))∥∥∥+ Eξt‖∇Hfξt(x∗)‖

≤ 1

τ
Eξt
∥∥∥τ(∇Hfξt(xt)−∇Hfξt(x∗))− rtH∥∥∥

2
+

1

τ
Eξt‖rtH‖+ Eξt‖∇Hfξt(x∗)‖

≤ 1

τ
Eξt
∥∥∥τ(∇H∪Ωfξt(x

t)−∇H∪Ωfξt(x
∗)
)
− rtH∪Ω

∥∥∥
2

+
1

τ
Eξt‖rtH‖+ Eξt‖∇Hfξt(x∗)‖

=
1

τ
Eξt
∥∥∥rt − τ(∇H∪Ωfξt(x

t)−∇H∪Ωfξt(x
∗)
)∥∥∥+

1

τ
Eξt‖rtH‖+ Eξt‖∇Hfξt(x∗)‖

≤
√
αβτ2 − 2ατ + 1

τ
‖rt‖+

1

τ
‖rtH‖+ Eξt‖∇Ifξt(x∗)‖,

where the last inequality follows from (18) of Lemma 4 by using the fact that H ∪ Ω is in M⊕MT ⊕MH. Combining the
two bounds, we obtain the inequality:

‖rtH‖ ≥ α0‖rt‖ − β0Eξt‖∇Ifξt(x∗)‖,

where α0 = cHατ −
√
αβτ2 − 2ατ + 1 and β0 = (1 + cH)τ . In order to obtain an upper bound of ‖rtHc‖, we

assume rt 6= 0. Otherwise, our statement is trivially true. Two possible cases exist. The first case is that if α0‖rt‖ −
β0Eξt‖∇Ifξt(x∗)‖ ≤ 0, i.e. α0‖rt‖ ≤ β0Eξt‖∇Ifξt(x∗)‖, then we have ‖rtHc‖ ≤ ‖rt‖ ≤ β0

α0
Eξt‖∇Ifξt(x∗)‖. The

second case is that if α0‖rt‖ − β0Eξt‖∇Ifξt(x∗)‖ > 0, i.e. α0‖rt‖ > β0Eξt‖∇Ifξt(x∗)‖, then we have

‖rtH‖ ≥
(
α0 −

β0Eξt‖∇Ifξt(x∗)‖
‖rt‖

)
‖rt‖.

Moreover, notice that ‖rtH‖2 = ‖rt‖2 − ‖rtHc‖22. We obtain

‖rtHc‖ ≤ ‖rt‖
√

1−
(
α0 −

β0Eξt‖∇Ifξt(x∗)‖
‖rt‖

)2

.

Denote x0 := α0−β0Eξt‖∇Ifξt(x∗)‖/‖rt‖. Notice that x0 ∈ [0, 1). Define function ϕ(x) = 1/
√

1− x2−xx0/
√

1− x2

on (0, 1). The first derivative of ϕ is ϕ′(x) = (x−x0)/(1−x2)
√

1− x2 and ϕ gets its minimum at x0, i.e., ϕ(x0) ≤ ϕ(x).
Therefore, substituting into the bound for ‖rtHc‖, we get

‖rtHc‖ ≤ ‖rt‖ϕ(x0) ≤ ‖rt‖ϕ(x)

= ‖rt‖
(

1√
1− x2

− x√
1− x2

(
α0 −

β0Eξt‖∇Ifξt(x∗)‖
‖rt‖

))
=

1− xα0√
1− x2

‖rt‖+
xβ0√
1− x2

Eξt‖∇Ifξt(x∗)‖.

In order to make the overall convergence rate as small as possible, we should make (1− xα0)/
√

1− x2 as small as possible.
Define the ϕ function again as ϕ(x) = (1− xα0)/

√
1− x2, we obtain the minimum at x = α0. Therefore, by combining

the two cases, we obtain

‖rtHc‖ ≤
√

1− α2
0‖rt‖+

[
β0

α0
+

α0β0√
1− α2

0

]
Eξt‖∇Ifξt(x∗)‖,

which proves the lemma.

Remark 3. We should point out that we mainly follow the proof of Lemma 10 in Hegde et al. (2015a) where they consider
the least square as the objective function with the model-RIP property. However, there are two main differences: 1) we
assume a more general case, that is, our objective F (x) is strongly convex and each fξt(x) is strong smoothness. The above
lemma can be applied to any function that satisfies this property; 2) The inequality (8) satisfies in stochastic setting.
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Theorem 1. Denote ξ[t] = (ξ0, ξ1, . . . , ξt) as the history of the stochastic process ξ0, ξ1, . . . up to time t, and all random
variables ξt are independent of each other. Define the probability mass function Pr(ξt = i) = 1/n. Let x∗ be an optimal
solution of (1) and x0 be the start point of Algorithm 1. If we choose a constant learning rate with ηt = η, then the solution
xt+1 generated by Algorithm 1 satisfies

Eξ[t]‖xt+1 − x∗‖ ≤ κt+1‖x0 − x∗‖+
1

1− κ

(
β0

α0
+

α0β0√
1− α2

0

+ η

)
Eξt‖∇Ifξt(x∗)‖,

where

κ = (1 + cT )
(√

αβη2 − 2αη + 1 +
√

1− α2
0

)
, α0 = cHατ −

√
αβτ2 − 2ατ + 1,

β0 = (1 + cH)τ, I = arg max
S∈M⊕MT ⊕MH

Eξt‖∇Sfξt(x∗)‖, and τ, η ∈ (0, 2/β).

Proof. Since xt+1 is completely determined by the realizations of the independent random variables (ξ0, ξ1, . . . , ξt),
the total expectation of the approximation error ‖xt+1 − x‖ can be taken as E‖xt+1 − x∗‖ := Eξ[t]‖xt+1 − x∗‖ =

Eξt|ξ[t−1]
‖xt+1 − x‖. Without loss of generality, Eξ[−1]

‖x0 − x∗‖2 = ‖x0 − x∗‖2. Define rt+1 := xt+1 − x∗,Ω :=

supp(rt+1), H := ‖P(∇fξt(xt),M⊕MT ,MH)‖0, T := ‖P(xt − ηbt,M,MT )‖0 as the support of head projection and
tail projection respectively. Firstly, we try to get an upper bound of ‖rt+1‖ as the following

Eξ[t]‖xt+1 − x∗‖ = Eξt|ξ[t−1]
‖xt+1 − x∗‖

= Eξt|ξ[t−1]
‖P(xt − ηbt,M,MT )− x∗‖

≤ Eξt|ξ[t−1]
‖P(xt − ηbt,M,MT )− (xt − ηbt)‖+ Eξt|ξ[t−1]

‖(xt − ηbt)− x∗‖
≤ (1 + cT )Eξt|ξ[t−1]

‖xt − ηbt − x∗‖
= (1 + cT )Eξt|ξ[t−1]

‖xt − η∇Hfξt(xt)− x∗‖
= (1 + cT )Eξt|ξ[t−1]

‖rt − η∇Hfξt(xt)‖,

where the first inequality follows by the triangle inequality and the second inequality follows by the definition of the tail
projection. To be more specific, denote Γ := ‖x∗‖0 ∈M and given any vector a, we always have ‖a− aΓ‖ ≤ ‖a− x∗Γ‖.
By the definition of the tail projection, one can get ‖a− aT ‖ ≤ cT minS∈M ‖a− aS‖ ≤ cT ‖at − atΓ‖. We get the second
inequality by replacing a with xt − ηbt. The third equality follows by Line 5 of Algorithm 1. In the rest of the proof, we
just need to bound the term, ‖rt − η∇Hfξt(xt)‖. Indeed, we can further bound it as

Eξt|ξ[t−1]
‖rt − η∇Hfξt(xt)‖ = Eξt|ξ[t−1]

‖rtHc + rtH − η∇Hfξt(xt)‖

≤ Eξt|ξ[t−1]

[∥∥∥rtH − η(∇Hfξt(xt)−∇Hfξt(x∗))∥∥∥+ η‖∇Hfξt(x∗)‖+ ‖rtHc‖
]

≤ Eξt|ξ[t−1]

[∥∥∥rtH∪Ω − η
(
∇H∪Ωfξt(x

t)−∇H∪Ωfξt(x
∗)
)∥∥∥+ η‖∇Hfξt(x∗)‖+ ‖rtHc‖

]
≤
√
αβη2 − 2αη + 1Eξ[t−1]

‖rt‖+ ηEξt‖∇Ifξt(x∗)‖+ Eξt|ξ[t−1]
‖rtHc‖

≤
(√

αβη2 − 2αη + 1 +
√

1− α2
0

)
Eξ[t−1]

‖rt‖+

(
β0

α0
+

α0β0√
1− α2

0

+ η

)
Eξt‖∇Ifξt(x∗)‖,

where the first three inequalities follow by the triangle inequality and the fourth inequality uses Lemma (3). Combine these
two bounds together, we obtain

Eξ[t]‖xt+1 − x∗‖ ≤ (1 + cT )Eξt|ξ[t−1]
‖rt − η∇Hfξt(xt)‖

≤ κEξ[t−1]
‖xt − x∗‖+

(
1 + cT

)(β0

α0
+

α0β0√
1− α2

0

+ η

)
Eξ[t]‖∇Ifξt(x∗)‖,
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where κ = (1 + cT )
(√

αβη2 − 2αη + 1 +
√

1− (α0)2
)

. We finish the proof by applying the above inequality recursively
over t iterations:

Eξ[t]‖xt+1 − x∗‖2 ≤ κt+1‖x0 − x∗‖2 +
1

1− κ
(

1 + cT

)(β0

α0
+

α0β0√
1− α2

0

+ η

)
Eξt‖∇Ifξt(x∗)‖.

Corollary 0. Suppose the random distribution is uniform, i.e., nPr(ξt) = 1 and the approximation factor of the head
projection can be arbitrary boosted close to 1. Taking η = 1/β, in order to get an effective linear convergence rate, i.e.,
κ < 1, the inverse of the condition number µ = α/β and tail projection factor cT need to satisfy

(1 + cT )(1 + 2
√
µ)
√

1− µ < 1.

Proof. To analyze κ, we write κ as a function of η, i.e., κ(η) = (1 + cT )(
√
αβη2 − 2αη + 1 +

√
1− α2

0). We claim that
κ(η) takes its minimum at η = 1/β. To see this, we have

κ(η) = (1 + cT )
(√

αβ(η − 1/β)2 + 1− µ+
√

1− α2
0

)
≥ (1 + cT )

(√
1− µ+

√
1− α2

0

)
.

Therefore, when η = 1/β, κ(η) takes its minimum. Recall α0 = cHατ −
√
αβτ2 − 2ατ + 1, τ ∈ (0, 2/β). Again, we

redefine α0 as a function of τ
α0(τ) = cHατ −

√
αβτ2 − 2ατ + 1, τ ∈ (0, 2/β).

α0(τ) is a concave function with respect to τ . To see this, the first and second derivative of α0(τ) are

α0
′(τ) = cHα−

αβτ − α√
αβτ2 − 2ατ + 1

, α0
′′(τ) =

(
αβτ2 − 2ατ + 1

)−3/2(
α2 − αβ

)
.

Hence, α−0
′′(τ) < 0 for τ ∈ (0, 2/β). To get the maximum of α0(τ), let α0

′(τ) = 0, and solve the following equation

cHα =
αβτ − α√

αβτ2 − 2ατ + 1
.

We get two solutions

τ1 =
1

β

(
1 + cH

√
β − α
β − c2Hα

)
, τ2 =

1

β

(
1− cH

√
β − α
β − c2Hα

)
.

Since we assume that the approximation factor cH of head-oracle can be boosted to any arbitrary constant value close to 1,
i.e., cH → 1−. Therefore,

lim
cH→1−

α0(τ1) = 2µ− 1, lim
cH→1−

α0(τ2) = −1.

As we require α0 > 0, we only take α0(τ1). Finally, the upper bound of κ can be simplified as

lim
cH→1−

κ = (1 + cT )

(√
1− µ+

√
1− lim

cH→1−
α0(τ1)2

)
= (1 + cT )

(√
1− µ+

√
1− (2µ− 1)2

)
= (1 + cT )

(√
1− µ+ 2

√
µ− µ2

)
= (1 + cT )(1 + 2

√
µ)
√

1− µ < 1.

Hence we prove the corollary.
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Corollary 1. If F (x) in (11) satisfies the α-RSC property and each fi(x) = n
2m‖ABix − yBi‖2 satisfies the β-RSS

property, then we have the following condition

α

2
‖x‖2 ≤ 1

2m
‖Ax‖2 ≤ β

2
‖x‖2.

Let the strong convexity parameter α = 1− δ and strong smoothness parameter β = 1 + δ, where 0 < δ < 1. The condition
of effective contraction factor is as the following

(1 + cT )
(√ 2

1 + δ
+

2
√

2(1− δ)
1 + δ

)√
δ < 1.

To obtain the condition of getting effective contraction factor, we need to have δ = 1−µ
1+µ ≤ 7/493 ≈ 0.014199.

Proof. The derivative of fi(x) is ∇fi(x) = n
mA

T
Bi

(ABix− yBi). ‖∇fi(x)−∇fi(y)‖ can be upper bounded as

‖∇fi(x)−∇fi(y)‖ =
n

m
‖AT

BiABi(x− y)‖ ≤ β‖x− y‖,

where the inequality follows by β-RSS of fi(x), i.e. ‖∇fi(x)−∇fi(y)‖ ≤ β‖x− y‖. Sum above n inequalities together
and divided by 2/n, then it is equivalent to say that F (x) satisfies 1

2m‖Ax‖2 ≤
β
2 ‖x‖2, where x ∈ M(M). In order to

satisfy α-RSC, the Hessian matrix 1
mA

TA also needs to satisfy

α

2
‖x‖2 ≤ 1

2
xTA

TA

m
x.

Combine above inequalities, we prove the condition. Therefore, under the RIP requirement, F (x) is (1 − δ)-RSC and
(1 + δ)-RSS. In order to satisfy Theorem 1, we require that

κ = (1 + cT )(1 + 2
√
µ)
√

1− µ < 1.

By replacing µ = 1−δ
1+δ , we prove the condition of the effective contraction factor. If µ ≥ 243

250 and cT is enough close to 1,
then κ < 1. Finally, δ = 1−µ

1+µ ≤ 7/493 ≈ 0.014199.

Corollary 2. Suppose we have the logistic loss, F (x) in (13) and each sample ai is normalized, i.e., ‖ai‖ = 1. Then F (x)
satisfies λ-RSC and each fi(x) in (14) satisfies (α+ (1 + ν)θmax)-RSS. The condition of getting effective contraction factor
of GRAPHSTOIHT is as the following

λ

λ+ n(1 + ν)θmax/4m
≥ 243

250
,

with probability 1− p exp (−θmaxν/4), where θmax = λmax(
∑m/n
j=1 E[aija

T
ij

]) and ν ≥ 1.

Proof. The derivative and the Hessian of fi(x) are

∇fi(x) =
n

m

m/n∑
j=1

(
− yijaij

1 + exp (yija
T
ij
x)

+ λx

)
, H(x) =

n

4m
AT
BiQABi + λI, (21)

where Q is an b × b diagonal matrix whose diagonal entries are Qijij = sech2( 1
2yija

T
ij
x) and sech is defined as
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sech(x) = 2
exp (x)+exp (−x) . To see this, the Hessian of fi(x) can be calculated as

H(x) =
n

m

m/n∑
j=1

(
y2
ij

exp (yija
T
ij
x)aija

T
ij

(1 + exp (yija
T
ij
x))2

+ λI

)

=
n

m

m/n∑
j=1

(
aija

T
ij

(1 + exp (−yijaT
ij
x))(1 + exp (yija

T
ij
x))

+ λI

)

=
n

m

m/n∑
j=1

(
aija

T
ij

(exp ( 1
2yija

T
ij
x) + exp (− 1

2yija
T
ij
x))2

+ λI

)

=
n

4m

m/n∑
j=1

(
aij

( 2

exp ( 1
2yija

T
ij
x) + exp (− 1

2yija
T
ij
x)

)2

aT
ij + 4λI

)
=

n

4m
AT
BiQABi + λI.

SinceQijij ≤ 1 andAT
Bi
QABi is symmetric matrix, we have

λI �H(x) � λI +
n

4m
AT
BiABi

, (22)

where 0 �M meansM is a positive semi-definite matrix. Hence, F (x) is λ-RSC. Given the derivative in (21), we aim at
getting the upper bound of ‖∇fi(x)−∇fi(y)‖ as follows

‖∇fi(x)−∇fi(y)‖ =
∥∥∥λ(x− y) +

n

m

m/n∑
j=1

yijaij (
1

1 + exp (yija
T
ij
y)
− 1

1 + exp (yija
T
ij
x)

)
∥∥∥

=
∥∥∥λ(x− y)− n

m

m/n∑
j=1

y2
ij

exp (yija
T
ij
θ)

(1 + exp (yija
T
ij
θ))2

aija
T
ij (x− y)

∥∥∥
=
∥∥∥(λI − n

m

m/n∑
j=1

exp (yija
T
ij
θ)

(1 + exp (yija
T
ij
θ))2

aija
T
ij

)
(x− y)

∥∥∥
=
∥∥∥(λI − n

4m
AT
BiQABi

)
(x− y)

∥∥∥,
where the first equality is from the derivative of fi(x) and fi(y) , the second equality follows by using the mean-value
theorem for φ(x) = 1/(1 + exp (yia

T
i x)), i.e. φ(y)− φ(x) = ∇φ(θ)(y − x), θ ∈ {(1− t)x+ ty : 0 ≤ t ≤ 1}, and the

third equality follows by y2
i = 1.

We define ‖M‖2 as a matrix norm, i.e., ‖M‖2 = sup{‖Mx‖/‖x‖ : x ∈ Rp with x 6= 0}, then we always have
‖Mx‖ ≤ ‖M‖2 · ‖x‖. Hence, ‖∇fi(x)−∇fi(y)‖ can be upper bounded as

‖∇fi(x)−∇fi(y)‖ ≤
∥∥∥λI − n

4m
AT
BiQABi

∥∥∥
2
‖x− y‖

≤
(
λ+

n

4m

∥∥∥AT
BiQABi

∥∥∥
2

)
‖x− y‖

≤
(
λ+

n

4m

∥∥∥AT
BiABi

∥∥∥
2

)
‖x− y‖,

where the second inequality follows by the triangle inequality of matrix norm, i.e., ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2. Therefore,
fi(x) satisfies (λ, λ + n

4m‖AT
Bi
ABi‖2,M(M))-RSS/RSC property. Furthermore, suppose the data is normalized, i.e.,

‖aiaT
i ‖2 = ‖ai‖2 = 1, by using Lemma 6, we can bound ‖AT

Bi
ABi‖2 as ‖AT

Bi
ABi‖2 ≤ (1 + ν)θmax, where ν ≥ 1 and

θmax is defined above. In order to satisfy Theorem 1, we require

κ = (1 + cT )(1 + 2
√
µ)(
√

1− µ) < 1,

where the inverse condition number of logistic regression is µ = λ
λ+n(1+ν)θmax/4m

. After calculation, µ ≥ 243
250 . We prove

the corollary.
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B. Results from benchmark datasets
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Figure 6. The probability of recovery as a function of oversampling ratio. The oversampling ratio is defined as the number of observations
m divided by sparsity s, i.e., m/s. These four public benchmark graphs (a), (b), (c), and (d) in the upper row are from Arias-Castro et al.
(2011).

Implementation details of GRAPHSTOIHT. The head and tail projection of GRAPHSTOIHT are implemented in C
language. We exactly follow the original implementation6. The two projections are essentially two binary search algorithms.
Each iteration of the binary search executes the Prize Collecting Steiner Tree (PCST) algorithm (Johnson et al., 2000) on the
target graph. Both projections have two main parameters: a lower bound sparsity sl and an upper bound sparsity su. In all
of the experiments, two sparsity parameters have been set to sl = p/2 and su = sl ∗ (1 + ω) for the head projection, where
the ω is the tolerance parameter set to 0.1. For the tail projection, we set sl = s and su = sl ∗ (1 + ω). The binary search
algorithm terminates when it reaches 50 maximum iterations.

In order to demonstrate GRAPHSTOIHT can handle different shapes of graph structure, we consider four public benchmark
graphs in Arias-Castro et al. (2011). In the upper row of Figure 6, all of the subgraphs are embedded in 33× 33 grid graph.
The sparsity of these four graphs is 26, 46, 92, and 132 respectively. All settings keep consistent with Section 5.1. The
learning rate η and block size are tuned from {0.2, 0.4, 0.6, 0.8} and {m/5,m/10} on additional 100 observations. The
results are reported in the bottom row of Figure 6. It shows that when the sparsity s increases, the number of observations
required is also increasing. This is consistent with the lower bound of the number of observations O(s log(p/s)), which
increases as s increases. Our method is consistent with the bound O(s log(d(vi)) + log p) shown in Equation (5) of
Hegde et al. (2015b) where the weight-degree d(vi) is 4 and the budget is s − 1. To further compare our method with
GRAPHCOSAMP (Hegde et al., 2015b), we repeat the experiment conducted in Appendix A of Hegde et al. (2015b) and
report the results in Figure 7. Thanks to the introduced randomness, GRAPHSTOIHT outperforms GRAPHCOSAMP.

C. Results from breast cancer dataset
Parameter tuning. All parameters are selected by using 5-fold-cross-validation. The sparsity s is tuned from
{10, 15, 20, 25, . . . , 90, 95, 100}. The regularization parameter λ is tuned from {10−3, 10−4}. The block size b is tuned
from {m,m/2}. Since we need to find a connected subgraph, the number of connected component is g = 1. The 4
non-convex methods all use backtracking line search (ArmijoGoldstein condition) to obtain the learning rate at each iteration
and stop at the maximum iteration of 40. The dataset has been normalized by using z-score, i.e., each sample ai is subtracted
by mean and divided by the standard deviation of {ai}295

i=1.

6The original implementation is available at: https://github.com/ludwigschmidt/cluster_approx.

https://github.com/ludwigschmidt/cluster_approx
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Figure 7. The probability of recovery as a function of oversampling ratio. This grid graph is from Hegde et al. (2015b).

We first measure the performance by using the balanced classification error in Jacob et al. (2009). The results are reported
in Table 4. GRAPIHT produces the lowest balanced classification error while the results of GRAPHSTOIHT are still
competitive. We argue that this may be caused by insufficient samples.

Gene identification. We pooled 25 genes from Phaedra et al. (2009); Couch et al. (2017); Rheinbay et al. (2017); Györffy
et al. (2010). These genes are highly related with breast cancer, namely, MKI67, CDKN1A, ATM, TFF3, FBP1, XBP1,
DSC2, CDH3, CHEK2, TOP2A, BRCA1, BRCA2, BARD1, NAT1, CA12, AR, TK2, RAD51D, GATA3, TOP2B, CCND3,
CCND2, AGR2, FOXA1, and FOXC1. GRAPHSTOIHT identifies more breast cancer-related genes but use less gene
features (see Table 5) than `1/`2-PATHWAY and GRAPHIHT.

Table 3. Breast cancer-related genes identified by different algorithms.

Algorithm Number of genes Cancer related genes
GRAPHSTOIHT 6 BRCA2, CCND2, CDKN1A, ATM, AR, TOP2A

GRAPHIHT 5 ATM, CDKN1A, BRCA2, AR, TOP2A
`1-PATHWAY 4 BRCA1, CDKN1A, ATM, DSC2

STOIHT 4 MKI67, NAT1, AR, TOP2A
STOIHT 4 MKI67, NAT1, AR, TOP2A

`1/`2-EDGE 3 CCND3, ATM, CDH3
`1-EDGE 3 CCND3, AR, CDH3

`1/`2-PATHWAY 2 BRCA1, CDKN1A
IHT 2 NAT1, TOP2A
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Table 4. Balanced Classification Error on the breast cancer dataset.
Folding ID `1-PATHWAY `1/`2-PATHWAY `1-EDGE `1/`2-EDGE IHT STOIHT GRAPHIHT GRAPHSTOIHT
Folding 00 0.349±0.06 0.349±0.07 0.339±0.04 0.358±0.06 0.352±0.08 0.350±0.08 0.322±0.04 0.380±0.05
Folding 01 0.419±0.09 0.321±0.04 0.341±0.05 0.364±0.06 0.369±0.08 0.359±0.08 0.358±0.08 0.383±0.07
Folding 02 0.398±0.07 0.314±0.05 0.340±0.05 0.315±0.05 0.353±0.05 0.348±0.07 0.311±0.06 0.322±0.06
Folding 03 0.396±0.03 0.342±0.04 0.336±0.07 0.352±0.07 0.358±0.06 0.342±0.06 0.365±0.03 0.365±0.03
Folding 04 0.380±0.06 0.366±0.06 0.356±0.08 0.358±0.05 0.349±0.08 0.368±0.08 0.357±0.06 0.350±0.05
Folding 05 0.418±0.04 0.330±0.07 0.386±0.11 0.368±0.08 0.353±0.04 0.347±0.05 0.354±0.09 0.310±0.06
Folding 06 0.376±0.03 0.307±0.04 0.384±0.07 0.353±0.04 0.343±0.05 0.367±0.08 0.321±0.03 0.321±0.03
Folding 07 0.394±0.04 0.363±0.08 0.360±0.06 0.357±0.05 0.352±0.06 0.334±0.05 0.327±0.04 0.363±0.09
Folding 08 0.408±0.05 0.336±0.05 0.313±0.04 0.366±0.07 0.340±0.07 0.340±0.07 0.355±0.05 0.357±0.05
Folding 09 0.366±0.05 0.374±0.05 0.394±0.03 0.359±0.03 0.343±0.07 0.343±0.07 0.335±0.06 0.335±0.05
Folding 10 0.353±0.07 0.313±0.08 0.362±0.08 0.350±0.05 0.358±0.07 0.334±0.07 0.356±0.05 0.340±0.07
Folding 11 0.410±0.06 0.376±0.05 0.370±0.08 0.342±0.06 0.369±0.05 0.384±0.07 0.329±0.08 0.329±0.08
Folding 12 0.371±0.04 0.355±0.07 0.371±0.07 0.377±0.04 0.327±0.05 0.331±0.07 0.310±0.06 0.357±0.08
Folding 13 0.405±0.06 0.385±0.04 0.383±0.04 0.384±0.05 0.362±0.06 0.386±0.08 0.355±0.04 0.325±0.05
Folding 14 0.417±0.04 0.358±0.05 0.374±0.03 0.354±0.06 0.360±0.05 0.346±0.06 0.297±0.06 0.297±0.06
Folding 15 0.416±0.08 0.381±0.04 0.402±0.07 0.398±0.07 0.332±0.09 0.349±0.08 0.329±0.07 0.331±0.06
Folding 16 0.382±0.07 0.357±0.07 0.363±0.05 0.345±0.07 0.341±0.06 0.334±0.07 0.322±0.06 0.331±0.06
Folding 17 0.385±0.08 0.344±0.09 0.347±0.08 0.355±0.04 0.331±0.10 0.331±0.10 0.290±0.07 0.327±0.09
Folding 18 0.401±0.04 0.309±0.06 0.382±0.04 0.372±0.02 0.341±0.05 0.394±0.08 0.302±0.03 0.318±0.03
Folding 19 0.391±0.03 0.341±0.07 0.377±0.03 0.367±0.06 0.352±0.04 0.360±0.03 0.355±0.06 0.343±0.04
Averaged 0.392±0.06 0.346±0.06 0.364±0.07 0.360±0.06 0.349±0.07 0.352±0.07 0.332±0.06 0.339±0.07

Table 5. Number of nonzeros on the breast cancer dataset.
Folding ID `1-PATHWAY `1/`2-PATHWAY `1-EDGE `1/`2-EDGE IHT STOIHT GRAPHIHT GRAPHSTOIHT
Folding 00 075.4±12.92 208.6±71.37 053.2±13.76 081.6±28.88 082.0±36.00 088.0±24.00 028.0±04.00 037.6±10.97
Folding 01 081.6±04.13 113.0±27.62 003.8±02.14 059.8±39.75 051.0±22.00 057.0±22.27 095.4±00.80 066.2±36.55
Folding 02 072.2±10.57 108.8±45.66 044.6±22.54 054.2±19.77 075.0±00.00 040.0±18.44 040.6±00.49 024.6±08.69
Folding 03 068.0±21.38 117.8±54.22 041.2±12.58 063.6±21.84 083.0±06.00 040.0±08.94 051.6±08.33 051.6±08.33
Folding 04 044.4±17.97 135.8±68.41 046.6±14.68 049.2±17.35 035.0±00.00 043.0±17.20 028.8±17.60 065.0±11.33
Folding 05 075.6±20.37 121.0±50.32 051.6±12.97 069.0±15.95 085.0±00.00 071.0±28.00 049.4±12.21 032.2±12.06
Folding 06 058.2±10.15 147.6±47.86 042.2±13.14 016.2±22.45 010.0±00.00 044.0±16.85 079.6±09.20 079.8±09.60
Folding 07 040.2±14.55 115.8±70.68 022.8±09.83 050.6±11.99 040.0±00.00 044.0±03.74 098.4±04.27 080.4±35.45
Folding 08 049.0±23.73 137.4±62.11 009.2±02.48 020.4±07.26 095.0±00.00 095.0±00.00 032.2±32.90 040.2±33.17
Folding 09 052.0±29.54 135.8±34.07 024.8±15.84 057.2±26.11 049.0±02.00 049.0±02.00 052.0±14.00 047.2±04.40
Folding 10 052.8±25.07 137.0±67.58 038.6±17.35 027.2±13.53 095.0±00.00 072.0±30.27 083.0±05.06 074.8±18.09
Folding 11 063.8±14.69 202.2±40.56 055.4±13.88 043.8±32.08 044.0±02.00 037.0±09.27 098.4±09.60 098.4±09.60
Folding 12 057.2±23.96 217.4±28.99 040.8±15.59 059.2±06.08 046.0±12.00 036.0±17.72 068.2±24.10 041.2±16.67
Folding 13 068.0±18.44 177.4±91.56 056.6±34.55 073.8±22.13 077.0±26.00 061.0±12.00 088.6±23.80 031.0±03.74
Folding 14 066.6±19.89 148.4±27.38 038.6±12.56 040.8±15.52 070.0±10.00 066.0±14.28 045.0±00.00 045.0±00.00
Folding 15 062.8±09.99 215.2±51.84 037.0±08.41 063.0±14.21 056.0±18.00 056.0±22.00 029.4±02.33 063.0±28.57
Folding 16 051.2±23.59 075.2±39.45 045.8±28.60 060.8±16.09 088.0±06.00 077.0±16.91 029.6±01.85 029.2±02.14
Folding 17 050.6±15.53 147.8±18.14 043.8±32.50 039.4±23.10 094.0±12.00 094.0±12.00 034.2±02.14 029.2±09.83
Folding 18 069.6±11.45 116.8±53.54 037.8±22.43 044.2±21.33 088.0±06.00 041.0±13.19 038.6±03.83 050.6±13.65
Folding 19 065.0±30.55 172.4±20.71 064.4±04.45 053.0±29.57 095.0±00.00 082.0±11.66 032.4±23.80 046.0±10.20
Averaged 061.2±22.12 147.6±64.84 039.9±23.09 051.4±27.34 067.9±27.28 059.6±25.70 055.2±28.88 051.7±26.65
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D. Run time analysis
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Figure 8. The run time of GRAPHSTOIHT and STOIHT as a function of p. (a) shows the total run time of GRAPHSTOIHT for recovering
x∗ ( Recall that x∗ has been recovered if ‖Axt+1−y∗‖ ≤ 10−7). (b) illustrates the percentage of the projection time of GRAPHSTOIHT
with respect to p. (c) and (d) show the total run time and percentage of the projection time for STOIHT respectively. For GRAPHSTOIHT,
the percentage of the projection time is the run time of head and tail projection divided by the total run time. For STOIHT, the percentage
of the projection time is the run time of hard thresholding divided by the total run time. All results are averaged on 50 trials.

In this section, we explore the run time of GRAPHSTOIHT on the task of graph sparse linear regression. The experimental
setup follows in Section 5.1. In order to consider high dimensional and large number of measurement setting, the dimension
p is chosen from {400, 900, 1600, 2500, 3600, 4900} and the number of measurements m is set to p, i.e., m = p so that all
methods have sufficient number of measurements to recover x∗. The sparsity s is set to 20 and the number of blocks n is from
{1, 2, 4, 8, 10}. The learning rate is η = 1.0.7 As shown in Figure 8 (a) and (b), when the number of measurements m and
dimension p are increasing, the run time of the algorithm is dominated by calculating the gradient for both GRAPHSTOIHT
and STOIHT. For comparison, we also show the run time and the percentage of projection time in Figure 8 (c) and (d).

Figure 9 illustrates the run time of head and tail projection. It has been shown in Section 3 that the time complexity of
head/tail projection isO(p log3(p)) when the graph is sparse. The results of Figure 9 are consistent with the time complexity
where the run time of these two projections is nearly-linear increasing with respect to the dimension p.
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(a) Head Projection Time
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(b) Tail Projection Time
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Figure 9. The run time of projections as a function of dimension p. (a) shows the total run time of the head projection for recovering x∗.
(b) illustrates the total run time of tail projection of GRAPHSTOIHT with respect to p. The total projection time has been shown in (c).
All results are averaged on 50 trials.

7To clarify, in order to be consistent with Nguyen et al. (2017), when n = 1, the learning rate of IHT algorithm proposed in Blumensath
& Davies (2009) should be η = 0.5 in our implementation. It is exactly corresponding to Equation (10) in Blumensath & Davies (2009).


