Dual Averaging Method for Online Graph-Structured Sparsity

Baojian Zhou^{1,2}, Feng Chen¹, and Yiming Ying²

¹Department of Computer Science, ²Department of Mathematics and Statistics, University at Albany, NY, USA

Weighted Graph Model $\mathbb{M} = \{S : |S| \leq 3, S \text{ is connected }\}$ Hegde et al. (2015a).

Main Idea

An intuitive way to do this is to use online projected gradient descent Zinkevich (2003) where the algorithm needs to solve the following projection at iteration t:

$$\mathbf{w}_{t+1} = \mathrm{P}(\mathbf{w}_t - \eta_t \nabla f_t(\mathbf{w}_t), \mathcal{M}(\mathbb{M})),$$
 (1)

where η_t is the learning rate and P is the projection operator onto $\mathcal{M}(\mathbb{M})$, i.e., $\mathrm{P}(\cdot, \mathcal{M}(\mathbb{M})): \mathbb{R}^{p}
ightarrow \mathbb{R}^{p}$ is defined as

$$P(\boldsymbol{w}, \mathcal{M}(\mathbb{M})) = \underset{\boldsymbol{x} \in \mathcal{M}(\mathbb{M})}{\arg\min} \|\boldsymbol{w} - \boldsymbol{x}\|^{2}.$$
 (2)

However, there are two essential drawbacks of online PGD

- The projection in (1) only uses single gradient $\nabla f_t(w_t)$ which is too noisy (large variance) to capture the graph-structured information at each iteration;
- ► The training samples coming later are less important than these coming earlier due to the decay of learning rate η_t .

Inspired by dual averaging-based methods, at each iteration, our method updates w_t by using the following minimization step:

$$\boldsymbol{w}_{t+1} = \operatorname*{arg\,min}_{\boldsymbol{w}\in\mathcal{M}(\mathbb{M})} \left\{ \left\langle \frac{1}{t+1} \sum_{i=0}^{t} \boldsymbol{g}_{i}, \boldsymbol{w} \right\rangle + \frac{\beta_{t}}{2t} \|\boldsymbol{w}\|_{2}^{2} \right\},$$
(3)

where β_t is to control the learning rate implicitly and g_i is a subgradient in $\partial f_i(\boldsymbol{w}, \{\boldsymbol{x}_i, \boldsymbol{y}_i\}) = \{\boldsymbol{g} : f_i(\boldsymbol{z}, \{\boldsymbol{x}_i, \boldsymbol{y}_i\}) \geq f_i(\boldsymbol{w}, \{\boldsymbol{x}_i, \boldsymbol{y}_i\}) + \langle \boldsymbol{g}, \boldsymbol{z} - \boldsymbol{w} \rangle, \forall \boldsymbol{z} \in I\}$ $\mathcal{M}(\mathbb{R})$. The minimization step (3) has the following equivalent projection problems, specified in the following Theorem.

Theorem: Assume $\beta_t = \gamma \sqrt{t}$, where $\gamma > 0$ and denote $\bar{s}_{t+1} = \frac{1}{t+1} \sum_{i=0}^{t} g_i$. The minimization step of (3) can be expressed as the following two equivalent optimization problems:

$$\max_{S \in \mathbb{M}} \|P(-\frac{\sqrt{t}\bar{s}_{t+1}}{\gamma}, S)\|_2^2$$
(4)

$$\min_{\boldsymbol{S}\in\mathbb{M}}\|-\frac{\sqrt{t}\bar{\boldsymbol{s}}_{t+1}}{\gamma}-P(-\frac{\sqrt{t}\bar{\boldsymbol{s}}_{t+1}}{\gamma},\boldsymbol{S})\|_{2}^{2},$$
(5)

where P(s, S) is the projection operator that projects s onto the subspace spanned by S.

The original minimization problem can be equivalently expressed as

$$\begin{split} \boldsymbol{w}_{t+1} &= \arg\min_{\boldsymbol{w}\in\mathcal{M}(\mathbb{M})} \left\{ \langle \bar{\boldsymbol{s}}_{t+1}, \boldsymbol{w} \rangle + \frac{\gamma}{2\sqrt{t}} \|\boldsymbol{w}\|_{2}^{2} \right\} \\ &= \arg\min_{\boldsymbol{w}\in\mathcal{M}(\mathbb{M})} \left\| \boldsymbol{w} - \left(-\frac{\sqrt{t}}{\gamma} \bar{\boldsymbol{s}}_{t+1} \right) \right\|_{2}^{2}, \end{split}$$

Each step is essentially a projection !

• genes in HSA05213

• genes not in HSA05213

If $\mathcal{M}(\mathbb{M})$ is a **convex set**, then

- ▶ The regret can be bounded as: $R(T, \mathcal{M}(\mathbb{M})) = C \cdot \mathcal{O}(\sqrt{T})$, where C is a constant
- ► If we assume further that the loss is strongly convex, then $\|\boldsymbol{w}_T - \boldsymbol{w}\|_2^2 = \mathcal{O}(\frac{\ln I}{T}).$

However, $\mathcal{M}(\mathbb{M})$ is not convex in our case. We leave the regret bound analysis of this case as a future work.

- interpretability.
- Future work

UNIVERSITYATALBANY

► Does GRAPHDA have non-regret bound under some proper assumption ? ► What if true structure of features are time evolving ?

Code & Datasets

Code & Datasets can be found at GitHub: https://github.com/baojianzhou/graph-da ► Email: bzhou6@albany.edu

► Baojian Zhou is open to postdoc positions.