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Online Graph-structured Learning
We study an online graph-structured learning problem, which is to minimize
the regret as defined in the following

R(T ,M(M)) :=
T∑
t=1

ft(wt, {xt, yt})− min
w∈M(M)

T∑
t=1

ft(w , {xt, yt}),

I ft(w , {xt, yt}) is a convex loss
I M(M) models structured sparsity such as

connected subgraphs, dense subgraphs, and
subgraphs isomophic to a query graph, . . .
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Weighted Graph Model M = {S : |S | ≤ 3, S is connected } Hegde et al. (2015a).

Main Idea
An intuitive way to do this is to use online projected gradient
descent Zinkevich (2003) where the algorithm needs to solve the following
projection at iteration t:

wt+1 = P(wt − ηt∇ft(wt),M(M)), (1)

where ηt is the learning rate and P is the projection operator onto M(M),
i.e., P(·,M(M)) : Rp → Rp is defined as

P(w ,M(M)) = arg min
x∈M(M)

‖w − x‖2. (2)

However, there are two essential drawbacks of online PGD

I The projection in (1) only uses single gradient ∇ft(wt) which is too
noisy (large variance) to capture the graph-structured information at each
iteration;

I The training samples coming later are less important than these coming
earlier due to the decay of learning rate ηt .

Inspired by dual averaging-based methods, at each iteration, our method
updates wt by using the following minimization step:

wt+1 = arg min
w∈M(M)

{〈
1

t + 1

t∑
i=0

gi ,w

〉
+
βt
2t
‖w‖2

2

}
, (3)

where βt is to control the learning rate implicitly and gi is a subgradient in
∂fi(w , {xi , yi}) = {g : fi(z , {xi , yi}) ≥ fi(w , {xi , yi}) + 〈g , z −w〉,∀z ∈
M(R)}. The minimization step (3) has the following equivalent projection
problems, specified in the following Theorem.

Theorem: Assume βt = γ
√
t, where γ > 0 and denote

s̄t+1 = 1
t+1

∑t
i=0 gi . The minimization step of (3) can be expressed as the

following two equivalent optimization problems:

max
S∈M

‖P(−
√
t s̄t+1

γ
, S)‖2

2 (4)

min
S∈M

‖ −
√
t s̄t+1

γ
− P(−

√
t s̄t+1

γ
, S)‖2

2, (5)

where P(s, S) is the projection operator that projects s onto the subspace
spanned by S .

The original minimization problem can be equivalently expressed as

wt+1 = arg min
w∈M(M)

{
〈s̄t+1,w〉 +

γ

2
√
t
‖w‖2

2

}
= arg min

w∈M(M)

∥∥∥w − (− √t
γ

s̄t+1

)∥∥∥2

2
,

Each step is essentially a projection !

Theorem Insight
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P(x, S) x
−
P
(x

,S
)

‖x‖22 − ‖P(x, S)‖22 = ‖x− P(x, S)‖22

Define x := −
√
t s̄t+1 and adding minimization to both sides

min
S∈M

{
‖x‖2 − ‖P(x , S)‖2

}
= min

S∈M
‖x − P(x , S)‖2.

By moving the minimization into the negative term, we obtain

‖x‖2 + max
S∈M

‖P(x , S)‖2 = min
S∈M

‖x − P(x , S)‖2.

Proposed Algorithms
Algorithm 1 GraphDA: Online Graph Dual Averaging Algorithm

1: Input: γ, M
2: s̄0 = 0,w0 = 0
3: for t = 0, 1, 2, . . . do
4: receive {xt, yt} and compute gt = ∇ft(wt, {xt, yt})
5: s̄t+1 = s̄t + gt
6: bt+1 = P(s̄t+1,M)

7: wt+1 = P(−
√
t
γ bt+1,M)

8: end for

Let M = {S : |S | ≤ 3, S is connected }. Finding a connected subgraph up to
3 nodes.
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Graph Projection Operator Hegde et al. (2015b)

What if the graph information is not available ?
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Sparse Projection Operator

Algorithm 2 DAIHT
1: Input: γ, M
2: s̄0 = 0,w0 = 0
3: for t = 0, 1, 2, . . . do
4: receive {xt, yt} and compute

gt = ∇ft(wt, {xt, yt})
5: s̄t+1 = s̄t + gt
6: bt+1 = H(s̄t+1,M)

7: wt+1 = H(−
√
t
γ bt+1,M)

8: end for

Time Complexity and Regret
The time complexity of GraphDA mainly depends on two projections. If
we use the weighted-graph model, the per-iteration time cost could be

I non-sparse graph: O(p + |E| log3(p)) Edge-dependent
I sparse graph: O(p + p log3(p)) Nearly-linear !

If M(M) is a convex set, then

I The regret can be bounded as: R(T ,M(M)) = C · O(
√
T ), where C is

a constant.

I If we assume further that the loss is strongly convex, then
‖wT −w‖2

2 = O(lnT
T ).

However, M(M) is not convex in our case. We leave the regret bound
analysis of this case as a future work.

Experiments

Method Proposed in
Adam Kingma and Ba (2014)
`1-RDA Xiao (2010)
DA-GL Yang et al. (2010)
DA-SGL Yang et al. (2010)
AdaGrad Duchi et al. (2011)
StoIHT Nguyen et al. (2017)

GraphStoIHT Zhou et al. (2019)
DA-IHT This paper
GraphDA This paper

Dataset |V| |E|
Benchmark 1,089 2,112

MNIST 786 1,516
KEGG 5,372 78,545

non-sparse

sparse: convex-based
sparse: nonconvex-based

Aim to answer the following two questions:
I Can GraphDA achieve better classification performance?

I Can GraphDA learn stronger interpretative model through
capturing more meaningful graph-structured features?
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Evaluation Metric
I Area Under the ROC Curve(AUC) score

I Classification Accurracy(Acc)

I Nonzero Ratio

NRw =
|supp(w )|

p

Method AUCwt ,w̄t
Accwt ,w̄t

NRwt ,w̄t

Adam (0.618, 0.603) (0.619, 0.603) (100.0%, 100.0%)
`1-RDA (0.693, 0.672) (0.694, 0.673) (11.58%, 83.60%)

AdaGrad (0.696, 0.636) (0.696, 0.637) (11.33%, 100.0%)
DA-GL (0.735, 0.666) (0.735, 0.667) (15.99%, 100.0%)
DA-SGL (0.699, 0.647) (0.699, 0.647) (25.54%, 100.0%)
StoIHT (0.552, 0.523) (0.553, 0.523) (7.79%, 40.62%)

GraphStoIHT (0.603, 0.570) (0.602, 0.570) (7.84%, 22.06%)
DA-IHT (0.697, 0.666) (0.697, 0.666) (4.35%, 39.50%)
GraphDA (0.749, 0.739) (0.749, 0.739) (2.56%, 32.12%)

I GraphDA has better classification
performance.

I GraphDA has stronger model
interpretability.
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The learned models wt of four benchmark graphs. For each pixel i , black stands for (wt)i < 0, gray (wt)i = 0, and white (wt)i > 0.
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The classification accuracy as a function of number of training samples seen

I Online PGD-based: StoIHT and GraphStoIHT do not work!
I Online DA-based: `1-RDA,DA-GL,DA-SGL,DA-IHT work well.

I GraphDA outperforms other DA-based with the help of graph priors.
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Online graph sparse linear regression: We
generate 1,400 data samples by using the
following linear relation: yt = 〈xt,w∗〉,
where xt ∈ N (0, I ).

Three ways to generate w∗

I Normalized Model :
each nonzero wi ∈ [0.0, 1.0]

I Constant Model :
each nonzero wi = 1.0

I Gaussian Model :
each nonzero wi ∼ N (0, 1)

Evaluation metric

F1wt =
2|supp(w∗) ∩ supp(wt)|
|supp(w∗)| + |supp(wt)|

`1-RDA DA-IHT AdaGrad DA-GL DA-SGL GraphDA

· genes in HSA05213 · genes not in HSA05213

Conclusion and Future Work
Conclusion
I We propose a dual averaging-based method, GraphDA, for online

graph-structured sparsity constraint problems.

I We prove that the minimization problem in the dual averaging step can be
formulated as two equivalent optimization problems.

I GraphDA achieves better classification performance and stronger
interpretability.

Future work
I Does GraphDA have non-regret bound under some proper assumption ?

I What if true structure of features are time evolving ?

Code & Datasets
I Code & Datasets can be found at GitHub:

https://github.com/baojianzhou/graph-da

I Email: bzhou6@albany.edu

I Baojian Zhou is open to postdoc positions.

https://github.com/baojianzhou/graph-sto-iht
bzhou6@albany.edu

