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Graph Data

Graph data is everywhere!
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Motivation

We often encounter the following learning scenario:

• Data samples {xt , yt} are available on the fly: at each round, the

model makes a prediction based on current input sample.

• Data dimension is high, but only a small part of features is

important. This small part of features is graph-structured

(connectivity, density, etc) based on the graph information.

Graph-structured

Sparse

Model
Data stream Prediction

Online
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Research Question

How do we learn such graph-structured

sparse models under online setting ?
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Problem Formulation

Under online learning setting, at each time t, the learner

1. receives question xt ∈ Rp and makes a prediction

2. receives a loss ft(wt , {xt , yt}) after true label yt is revealed

3. updates wt
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w∗ is graph-structured (e.g. connectivity)!
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Problem Formulation

Minimize the regret subject to a graph-structured sparsity constraint

R(T ) :=
∑T

t=1

{
ft(wt , {xt , yt})

}
− minw∈M(M)

∑T
t=1

{
ft(w , {xt , yt})

}

• Regret

• Accumulated Loss

• Minimum Loss in hindsight

• Graph-structured sparsity set M(M)
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First Try: Online Projected Gradient Descent(PGD)

The online PGD algorithm updates wt as the following

wt+1 = P(wt − ηt∇ft (wt , {xt , yt}) ,M(M))

It hardly works due to two main drawbacks

1. It is unable to exploit the problem structure.

2. The new information is vanishing as steps ηt → 0.

Challenge: Can we exploit the problem structure more effectively ?
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Yes: exploit the structure via the dual space

Inspired by dual avaraging [Xiao, 2010], our method updates wt as the following

wt+1 = arg min
w∈M(M)

{〈
1

t + 1

t∑
i=0

gi ,w

〉
+

1

2
√
t
‖w‖2

}
,

• gi ∈ ∂fi (wi , {xi , yi}), each gradient is equivalently important

• 1
t+1

∑t
i=0 gi the average of the previous gradients — Dual Averaging

• tie-breaking rule: break ties arbitrarily

How to solve this minimization problem ?
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Main Theorem

Our method updates wt as the following

wt+1 = arg min
w∈M(M)

{〈
1

t + 1

t∑
i=0

gi ,w

〉
+

1

2
√
t
‖w‖2

}
.

Denote the dual averaging s̄t+1 = 1
t+1

∑t
i=0 gi , it can be expressed two equivalent problems:

Problem 1 : min
S∈M
‖ −
√
t s̄t+1 − P(−

√
t s̄t+1,S)‖2.

Problem 2 : max
S∈M
‖P(−

√
t s̄t+1,S)‖2
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Theorem Insight: Problem 1

The original minimization problem can be equivalently expressed as

wt+1 = arg min
w∈M(M)

{
〈s̄t+1,w〉+

1

2
√
t
‖w‖2

}
= arg min

w∈M(M)

∥∥∥w − (−√t s̄t+1

)∥∥∥2
,

Each step is essentially a projection !
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Theorem Insight: Problem 2

x1

x2

x

P(x ,S) x
−

P
(x
,S

)

‖x‖2 − ‖P(x ,S)‖2 = ‖x − P(x , S)‖2

Step 1: Let x := −
√
t s̄t+1 and add min to both sides

min
S∈M

{
‖x‖2 − ‖P(x ,S)‖2

}
= min

S∈M
‖x − P(x ,S)‖2.

Step 2: Move min into the negative term

‖x‖2 + max
S∈M
‖P(x ,S)‖2 = min

S∈M
‖x − P(x ,S)‖2.
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Online Graph Dual Averaging Algorithm

GraphDA

1: Input: M
2: s̄0 = 0,w0 = 0

3: for t = 0, 1, 2, . . . do

4: receive {xt , yt} and make prediction

5: compute gt = ∇ft(wt , {xt , yt})
6: s̄t+1 = s̄t + gt

7: bt+1 = P(s̄t+1,M)

8: wt+1 = P(−
√
tbt+1,M)

9: end for

Let M = {S : |S | ≤ 3,S is connected }. Finding

a connected subgraph up to 3 nodes.

w6
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w2
w1

w w6

w4 w5 w1

w2w3
P(·,M)

w6
w5
w4
w3
w2
w1

P(w ,M) w6

w4 w5 w1

w2w3
10
8
6
4
2
0

Graph Projection Operator [Hegde et al., 2015]
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GraphDA extended

What if the graph information is not available ?

DA-IHT

1: Input:M
2: s̄0 = 0,w0 = 0

3: for t = 0, 1, 2, . . . do

4: receive {xt , yt} and make a prediction

5: compute gt = ∇ft(wt , {xt , yt})
6: s̄t+1 = s̄t + gt

7: bt+1 = H(s̄t+1,M)

8: wt+1 = H(−
√
tbt+1,M)

9: end for

Let M3 = {S : |S | ≤ 3}. Sorting the magnitudes

of w and thresholding entries out of top s to zero.

w6
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w
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Hard Thresholding Operator
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Time Complexity and Regret

The time complexity of GraphDA mainly depends on two projections. If we use the

weighted-graph model, the per-iteration time cost could be

• non-sparse graph: O(p + |E| log3(p)) Edge-dependent

• sparse graph: O(p + p log3(p)) Nearly-linear !

If M(M) is a convex set, then

• The regret can be bounded as: R(T ,M(M)) = C · O(
√
T ), where C is a constant.

• If we assume further that the loss is strongly convex, then ‖wT −w∗‖2
2 = O( lnT

T ).

If M(M) is a nonconvex set, can we still obtain a non-regret bound ?
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Experimental setup

We compare GraphDA with baseline methods by using three datasets.

Method Proposed in

Adam Kingma and Ba [2014]

`1-RDA Xiao [2010]

DA-GL Yang et al. [2010]

DA-SGL Yang et al. [2010]

AdaGrad Duchi et al. [2011]

StoIHT Nguyen et al. [2017]

GraphStoIHT Zhou et al. [2019]

DA-IHT This paper

GraphDA This paper

Dataset |V| |E|
Benchmark 1,089 2,112

MNIST 786 1,516

KEGG 5,372 78,545

non-sparse

sparse: convex-based

sparse: nonconvex-based
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Two questions

Compared with baseline methods, we aim to answer the following two questions:

• Q1: Can GraphDA achieve better classification performance ?

• Q2: Can GraphDA learn a stronger interpretable model by

capturing meaningful graph-structured features ?
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Application 1: event classification on Benchmark dataset

Given the training dataset {xi ∈ Rp, yi ∈ {±1}}ti=1 on the fly

• yt = −1: no event (“business-as-usual”);

• yt = +1: event: disease outbreak/computer virus etc.

Task: To classify these samples online and at the same time to find the hidden structure on

these events!
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GraphDA has higher classification accuracy
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• Online PGD-based: StoIHT and GraphStoIHT do not work!

• Online DA-based: `1-RDA,DA-GL,DA-SGL and DA-IHT work well.

• GraphDA outperforms other DA-based with the help of graph priors.
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GraphDA learns more interpretable models
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Application 2: gene identification on KEGG dataset

`1-RDA DA-IHT AdaGrad DA-GL DA-SGL GraphDA
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GraphDA learns more cancer-related genes and more structures (edges).
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Application 3: online graph sparse linear regression
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Use the least square loss ft(wt , {xt , yt}) =

(yt − 〈wt , xt〉)2.

Samples are generated by using the following

linear relation: yt = 〈xt ,w∗〉, where xt ∈
N (0, I ). We use three different strategies to

obtain w∗.

Task: To learn the structure of w∗ !

University at Albany, SUNY Dual Averaging Method for Online Graph-structured Sparsity KDD,2019 20



Summary

Conclusion

• We propose a dual averaging-based method, GraphDA, for online graph-structured

sparsity constraint problems.

• We prove that the minimization problem in the dual averaging step can be formulated

as two equivalent optimization problems.

• GraphDA achieves better classification performance and stronger interpretability.

Future work

• Does GraphDA have non-regret bound under some proper assumption ?

• What if true structure of features are time evolving ?
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Thank you!

Q & A

Code and datasets: https://github.com/baojianzhou/graph-da

Install GraphDA: pip install sparse-learn
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Roadmap

• Motivation

• Problem Formulation

• Proposed Algorithm

• Experimental Results

• Conclusion
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Implementation Details

Algorithm 1 Head/Tail Projection (P(w ,M)) Hegde et al. [2015]

1: Input: w ,max iter,M = (G(V,E, c), sl , sh, g)

2: π = w ·w // vector dot product, i.e., πi = wi ∗ wi

3: λl = 0, λh = max{π1, π2, . . . , πp}, λm = 0, t = 0

4: repeat

5: λm = (λl +λh)/2; cm = λm ·c // scale dot product, i.e., (cm)i = λm∗ci
6: F = PCST(G(V,E, cm),π, g)

7: if sl < |F| < sh then return wF ;

8: if |F| > sh then λl = λm else λh = λm;

9: t = t + 1

10: until t > max iter

11: ch = λh · c ; F = PCST(G(V,E, ch),π, g);

12: return wF

The code is written in C language with the standard C11.
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How to choose the sparsity
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Figure: Test dataset error rates as a function of sparsity s
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Parameter Tuning

• `1-RDA

• regularization: λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10}.
• learning rate (implicit): γ ∈ {1, 5, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4}
• sparsity-enhancing:

ρ ∈ {0.0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}
• Adam

• β1 = 0.9, β2 = 0.999, ε = 10−8

• α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.
• DA-GL/SGL

• λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 1e1}
• γ ∈ {1, 5, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4}
• 3× 3 grids as groups for Benchmark dataset.

• 2× 2 grids for MNIST dataset.
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Parameter Tuning

• AdaGrad

• λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 1e1}
• η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3}.

• StoIHT

• sparsity s ∈ {5, 10, . . . , 150}
• γ ∈ {1, 5, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4}

• GraphStoIHT/GraphDA

• sparsity s ∈ {5, 10, . . . , 150}
• γ ∈ {1, 5, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4}
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Classification Performance

Prewt =
|supp(w∗) ∩ supp(wt)|

|supp(wt)|
, Recwt =

|supp(w∗) ∩ supp(wt)|
|supp(w∗)|

F1wt =
2|supp(w∗) ∩ supp(wt)|
|supp(w∗)|+ |supp(wt)|

, NRw =
|supp(w)|

p
.

Method Prewt Recwt F1wt AUCwt ,w̄t Accwt ,w̄t Misswt ,w̄t NRwt ,w̄t

Adam 0.024 1.000 0.047 (0.618, 0.603) (0.619, 0.603) (166.35, 173.10) (100.0%, 100.0%)

`1-RDA 0.267 0.863 0.389 (0.693, 0.672) (0.694, 0.673) (155.30, 166.05) (11.58%, 83.60%)

AdaGrad 0.256 0.877 0.379 (0.696, 0.636) (0.696, 0.637) (156.00, 166.00) (11.33%, 100.0%)

DA-GL 0.176 0.967 0.283 (0.735, 0.666) (0.735, 0.667) (142.90, 162.20) (15.99%, 100.0%)

DA-SGL 0.523 0.854 0.506 (0.699, 0.647) (0.699, 0.647) (151.00, 165.50) (25.54%, 100.0%)

StoIHT 0.057 0.150 0.072 (0.552, 0.523) (0.553, 0.523) (194.55, 195.25) (7.79%, 40.62%)

GraphStoIHT 0.151 0.356 0.194 (0.603, 0.570) (0.602, 0.570) (174.65, 181.40) (7.84%, 22.06%)

DA-IHT 0.507 0.744 0.566 (0.697, 0.666) (0.697, 0.666) (155.65, 162.85) (4.35%, 39.50%)

GraphDA 0.869 0.906 0.880 (0.749, 0.739) (0.749, 0.739) (133.45, 136.20) (2.56%, 32.12%)
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Online Graph Sparse Linear Regression
F1 score as a function of samples seen (2nd to 4th row) on seven handwritten digits.
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M(M)— A toy example

M(M) := {w |supp(w) ∈M} where M := {S |G(S ,E′) is connected subgraph up to size 3.}

w6
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w4

w3

w2

w1

w1

w6

w4 w5 w1

w2w3

w2

w6

w4 w5 w1

w2w3

w3

w6

w4 w5 w1

w2w3

w1 ∈M(M) X w2 /∈M(M) w3 /∈M(M)

At each time t, we need G(supp(wt),E′) is connected and |supp(wt)| ≤ 3.
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Projection explanation

How can we make sure wt is in M(M) ? Projection!

The projection onto M(M) is defined as

P(w ,M(M)) = arg min
x∈M(M)

‖w − x‖2.

w1

w2

wM(M)

w1

w2

w
‖w − x‖2

M(M)

P(w ,M(M))
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Online Mirror Descent

Algorithm 2 OMD(Online Mirror Descent [Hazan et al., 2016])

1: Input: η, R(x),BR(x , y),K
2: let y1 be such that ∇R(y1) = 0 and x1 = arg minx∈K BR(x , y1)

3: for t = 0, 1, 2, . . . do

4: update yt by rule ∇R(yt+1) = ∇R(yt)− η∇ft(xt)
5: projection step xt+1 = arg min∈K BR(x , yt+1)

6: end for

• R(x) is a Legendre Function (1. strictly convex; 2. has continuous first order

derivatives; and 3. limx→K̄\K ‖∇R(x) = +∞).

• BR(x , y) = R(x)− R(y)− 〈x − y ,∇F (y)〉
• Online Mirror Descent is a generalized version of Online PGD.

• When R(x) = 1
2〈x , x〉, OMD is exactly the same as Online PGD.
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Regret (Continue)

Open problems: Provided the GraphDA algorithm,

• Can we obtain a non-regret bound under some condition ?

• What are the conditions ?
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