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Graph data is everywhere!
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Motivation

We often encounter the following learning scenario:
Graph-structured

e Data samples {x;,y:} are available on the fly: at each round, the

. . Il
model makes a prediction based on current input sample. #

e Data dimension is high, but only a small part of features is EEEE
important. This small part of features is graph-structured Sparse
(connectivity, density, etc) based on the graph information.

) Prediction

Online
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Research Question

How do we learn such graph-structured
sparse models under online setting ?
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Problem Formulation

Under online learning setting, at each time t, the learner

1. receives question x; € RP and makes a prediction
2. receives a loss fy(wy, {x, y+}) after true label y; is revealed
3. updates w;
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Problem Formulation

Under online learning setting, at each time t, the learner

1. receives question x; € RP and makes a prediction
2. receives a loss fy(wy, {x, y+}) after true label y; is revealed

3. updates w;
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21
w3
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w* is graph-structured (e.g. connectivity)!
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Problem Formulation

Minimize the regret subject to a graph-structured sparsity constraint

t=1 ft(wta{xtayt}) - mmWGM(M) Zt 1 ft 7{Xt7yt})}

- ¥l
Regret (2 O/
Accumulated Loss
Minimum Loss in hindsight

Graph-structured sparsity set M (M
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First Try: Online Projected Gradient Descent(PGD)

The online PGD algorithm updates w; as the following

Wei1 = P(we — e Ve (e, {xe, vt }) , M(M))
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First Try: Online Projected Gradient Descent(PGD)

The online PGD algorithm updates w; as the following

Wei1 = P(we — e Ve (e, {xe, vt }) , M(M))

It hardly works due to two main drawbacks

1. It is unable to exploit the problem structure.

2. The new information is vanishing as steps 7; — 0.

Challenge: Can we exploit the problem structure more effectively ?
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Yes: exploit the structure via the dual space

Inspired by dual avaraging [Xiao, 2010], our method updates w; as the following
1 < 1
weer = argmin 4 (3 g w )+~ w|?
' weM(M){<t+1§ I > 2Vt

e g; € Ofi(w;, {xi,y;}), each gradient is equivalently important
° ﬁ Zf:o g; the average of the previous gradients — Dual Averaging

e tie-breaking rule: break ties arbitrarily
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Yes: exploit the structure via the dual space

Inspired by dual avaraging [Xiao, 2010], our method updates w; as the following
1 < 1
weer = argmin 4 (3 g w )+~ w|?
' weM(M){<t+1§ I > 2Vt

e g; € Ofi(w;, {xi,y;}), each gradient is equivalently important
° ﬁ Zf:o g; the average of the previous gradients — Dual Averaging

e tie-breaking rule: break ties arbitrarily

How to solve this minimization problem ?
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Our method updates w; as the following

1 t
W1 = argmin _ g, w [|w ||
T wemon {<’-‘+ 12 > 2Vt

Denote the dual averaging §;11 = ﬁll Zf:o g, it can be expressed two equivalent problems:

Problem 1 : min || - V151 — P(—Vt5:41, S)|°.
€

Problem 2 : P(—V/t5r11, S)|?
roblem rsneaﬁH (—Vt5e41, S|
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Theorem Insight: Problem 1

The original minimization problem can be equivalently expressed as
wers = argmin { (51, w) + == |lwl?}
weM(M) \f
2
‘W— (— \/E§t+1>’

= arg min
weM(M

9

Each step is essentially a projection !
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Theorem Insight: Problem 2

2 x]? = [IP(x, S)[? = [Ix — P(x, 5)|>

x —P(x,S)

P(x,S)

X1

L
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Theorem Insight: Problem 2

X2

1[I = [IP(x, S)I* =[x — P(x, )|

x —P(x,S)

P(x,S)

X1

7

Step 1:  Let x := —/t5;;1 and add min to both sides
: 2 2 - 2
—|P(x,S } - — P(x, 5)|%
min {1xI1* = [P(x, )|} = min x ~ P(x,5)]|
Step 2:  Move min into the negative term

2 2 : 2
+ P(x,9)| = —P(x,9)|".
x| gﬂeaﬁH (x, S)|l E“E'IQHHX (x, S)l
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Online Graph Dual Averaging Algorithm

GRrAPHDA
1: Input: M
2.5 =0uw=0
3 fort=0,1,2,... do
4:  receive {X¢, yr} and make prediction
5. compute g = Vfi(wy, {X¢, ¥t })
6: Sy1=518:
7 b; 1 = P(§t+1,M)
8 Wiy = P(_\/Ebt+17M)
9: end for
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Online Graph Dual Averaging Algorithm

GRrAPHDA Let M = {S:|S| <3,S is connected }. Finding
1: Input: M a connected subgraph up to 3 nodes.
2.5 =0uw=0 w @
3: fort:.0,1,2,...do N :/’2 -
4:  receive {x¢,y:} and make prediction , O P(-, M)
5. compute g = Vi (wy, {x¢, yt}) wy |8 &
6:  Sty1 =5+ 8t ://i
7 b; 1 = P(§t+1,M)
8 Wiy — P(—ﬁth,M) Graph Projection Operator [Hegde et al., 2015]
9: end for
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GRAPHDA extended

What if the graph information is not available ?

DA-IHT
1: Input:M
2:.5=0,w=0
3 fort=0,1,2,... do
4:  receive {x;, y¢} and make a prediction
5. compute gy = Vfi(we, {x¢,y:})
6: Sy1=5+18:
7: b;y 1 = H(§t+1,M)
8 w1 = H(—V/thy11, M)
9: end for
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GRAPHDA extended

What if the graph information is not available ?

DA-THT Let M3 = {S : |S| < 3}. Sorting the magnitudes
1: Input:M of w and thresholding entries out of top s to zero.
2:.5=0,w=0

P(w,M
3 for t=0,1,2,... do W6W (w. Ml3)
4:  receive {x, and make a prediction ws
ey} P wal—H(-, M) 10

5. compute g = Vf(we, {x¢, ¥+ }) W4 g

_ _ 3
6:  Sty1 =St + 8t Wy %
7: bt+1 = H(§t+1, M) wy 0
8 wir1 = H(—Vthsy1,M) Hard Thresholding Operator
9: end for
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Time Complexity and Regret

The time complexity of GRAPHDA mainly depends on two projections. If we use the
weighted-graph model, the per-iteration time cost could be

e non-sparse graph: O(p + |E|log®(p)) Edge-dependent
e sparse graph: O(p + plog3(p)) Nearly-linear !
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Time Complexity and Regret

The time complexity of GRAPHDA mainly depends on two projections. If we use the
weighted-graph model, the per-iteration time cost could be

e non-sparse graph: O(p + |E|log®(p)) Edge-dependent
e sparse graph: O(p + plog3(p)) Nearly-linear !

If M(M) is a convex set, then

e The regret can be bounded as: R(T, M(M)) = C-O(\/T), where C is a constant.

e If we assume further that the loss is strongly convex, then ||wr — w*||3 = O(#)

If M(M) is a nonconvex set, can we still obtain a non-regret bound ?
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Experimental setup

We compare GRAPHDA with baseline methods by using three datasets.

Method Proposed in

ApAM Kingma and Ba [2014] Dataset V] E|
/1-RDA Xiao [2010] Benchmark 1,089 2,112
DA-GL Yang et al. [2010] MNIST 786 1,516
DA-SGL Yang et al. [2010] KEGG 5372 78,545
ADAGRAD Duchi et al. [2011]

STOIHT Nguyen et al. [2017]

GRAPHSTOIHT Zhou et al. [2019] non-sparse

DA-THT This paper sparse: convex-based
GRAPHDA This paper sparse: nonconvex-based

University at Albany, SUNY
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Compared with baseline methods, we aim to answer the following two questions:

e Q1: Can GRAPHDA achieve better classification performance 7

e Q2: Can GRAPHDA learn a stronger interpretable model by
capturing meaningful graph-structured features 7
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Application 1: event classification on Benchmark dataset

Given the training dataset {x; € RP,y; € {£1}}}_; on the fly

e y; = —1: no event (“business-as-usual”);

e v+ = +1: event: disease outbreak/computer virus etc.

Task: To classify these samples online and at the same time to find the hidden structure on
these events!
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GRAPHDA has higher classification accuracy

(b) Accg,
1 1 —0— ADAM
0.75 5 {—>—01-RDA
ADAGRAD

0.10 ; —s—DA-GL
0.65 15/~ —0— GRAPHSTOIHT

W —+—STOIHT
06019/~ —v—DA-SGL
0.55 Z —\—2—DA-IHT

: St " —o—CrapuDA

160 300 500 700 900 160 300 500 700 900
Samples Seen Samples Seen

e Online PGD-based: STOIHT and GRAPHSTOIHT do not work!
e Online DA-based: /1-RDA ,DA-GL,DA-SGL and DA-THT work well.
e GRAPHDA outperforms other DA-based with the help of graph priors.
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GRAPHDA learns more interpretable models
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identification on KEGG dataset

Application 2: gene
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GraphDA learns more cancer-related genes and more structures (edges).
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Application 3: online graph sparse linear regression

—4—0,-RDA
——DA-IHT

ADAGRAD
—4—DA-GL
iDA—SGL

GRAPHDA
Use the least square loss fi(we, {x¢,y:}) =

%gi (vt — (we, xt))?

0.4

§“'2' Samples are generated by using the following
S0 linear relation: y; = (x¢;,w*), where x; €
‘js,gj N(0,1). We use three different strategies to
Soa obtain w*.

:gu,s-

S

p Task: To learn the structure of w* !
3041

H b

§0.21
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Conclusion

e We propose a dual averaging-based method, GRAPHDA, for online graph-structured
sparsity constraint problems.

e We prove that the minimization problem in the dual averaging step can be formulated
as two equivalent optimization problems.

e GRAPHDA achieves better classification performance and stronger interpretability.
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Conclusion
e We propose a dual averaging-based method, GRAPHDA, for online graph-structured
sparsity constraint problems.

e We prove that the minimization problem in the dual averaging step can be formulated
as two equivalent optimization problems.

e GRAPHDA achieves better classification performance and stronger interpretability.

Future work

e Does GRAPHDA have non-regret bound under some proper assumption ?

e What if true structure of features are time evolving ?
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Thank you!
Q&A

Code and datasets: https://github.com/baojianzhou/graph-da

Install GRAPHDA: pip install sparse-learn

University at Albany, SUNY Dual Averaging Method for Online Graph-structured Sparsity
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Implementation Details

Algorithm 1 Head/Tail Projection (P(w, M)) Hegde et al. [2015]

Input: w, max_iter, M = (G(V,E, ¢), s/, sh,g)
w=w-w // vector dot product, i.e., T = w; * w;
A =0, = max{my,m2,...,Tp}, Am=0,t=0
repeat
Am = (N+A)/2;  €m=An-c //scaledot product, i.e., (€n)i = Am*c;
F = PCST(G(V,E, ¢yn), 7, g)
if s, <|F|<sp then return wgr;
if |F|>s, then A\ =)\, else \,=\,;
t=t+1
until t > max_iter
ceh=Ap-c; F =PCST(G(V,E, cp),m, g);
. return wr

[y

© 0N g RN

[ = S

The code is written in C language with the standard C11.
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How to choose the sparsity

(a) Graph01 (b) Graph02 (c) Graph03 (d) Graph04
= Lo o —— ADAM
C0.40 T - 0-36 HN-4----F---4----F----1 0.25 1 0.21 1= |(—¥— GRAPHDA]
s ..l ] \ Iu I Imluu ]
+0.30 - 0.24 4---fe--+--- "E““i' ————— 0.15 0.11
LP 1
025 1 0.18 ---4-- FH 0,10 4 0.06 1
= N S L
12 24 36 48 20 40 60 80 40 80 120 160 50 110 170 230
Sparsity Sparsity Sparsity Sparsity

Figure: Test dataset error rates as a function of sparsity s
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Parameter Tuning

e /1-RDA

e regularization: A\ € {0.0001,0.0005, 0.001, 0.005, 0.01, 0.03,0.05,0.1,0.3,0.5, 1, 3,5, 10}.

e learning rate (implicit): v € {1,5,1el,5el, 1e2,5e2,1e3,5e3, 1ed}

e sparsity-enhancing:

p € {0.0,0.00001, 0.00005, 0.0001, 0.0005,0.001, 0.005,0.01,0.05,0.1,0.5, 1}

e ADAM

e 3 =0.9 53 =0.999, =108

e « € {0.0001,0.0005,0.001, 0.005,0.01,0.05,0.1,0.5}.
e DA-GL/SGL

e )\ € {0.0001,0.0005,0.001,0.005,0.01,0.03,0.05,0.1,0.3,0.5, 1, 3,5, lel}

e v {1,51el,5¢el,1e2,5e2,1e3,5¢e3,1le4}

e 3 X 3 grids as groups for Benchmark dataset.

e 2 x 2 grids for MNIST dataset.
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Parameter Tuning

e ADAGRAD

e X € {0.0001,0.0005,0.001,0.005,0.01,0.03,0.05,0.1,0.3,0.5, 1,3,5, Lel}
e 1 € {0.0001,0.0005, 0.001,0.005,0.01,0.05,0.1,0.5,1.0,5.0, el, 5el, 1e2, 5e2, 1e3, 5e3}.

e STOIHT

e sparsity s € {5,10,...,150}

e v {15 1el,5¢el,1e2,5e2,1e3,5e3,1e4}
e GRAPHSTOIHT/GRAPHDA

e sparsity s € {5,10,...,150}

e v {1,51el,5¢el,1e2,5e2,1e3,5¢e3,1le4}
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Classification Performance

pre. — lsupp(w”) Nsupp(we)| , _ [supp(w™) N supp(w:)| _ 2|supp(w™) N supp(wt)| _ |supp(w)]
rew, = s eCw; — wy — s w— —.

[supp(wt)| Isupp(w*)| [supp(w*)| + [supp(w)| p

Method Prew,  Recw, Flw, AUCw, i, Accw,,w, Missw, ,w, NRw, ,w,
ADAM 0.024 1.000 0047 (0.618,0.603) (0.619, 0.603) (166.35, 173.10)  (100.0%, 100.0%)
£1-RDA 0267 0.863 0.380 (0.693, 0.672)  (0.694, 0.673)  (155.30, 166.05)  (11.58%, 83.60%)
ADAGRAD 0.256 0.877 0379  (0.696, 0.636)  (0.696, 0.637)  (156.00, 166.00)  (11.33%, 100.0%)
DA-GL 0.176 0967 0283 (0.735, 0.666) (0.735, 0.667)  (142.90, 162.20)  (15.99%, 100.0%)
DA-SGL 0523 0.854 0.506 (0.699, 0.647)  (0.699, 0.647)  (151.00, 165.50)  (25.54%, 100.0%)
STOIHT 0.057 0.150 0.072 (0552, 0.523)  (0.553, 0.523)  (194.55, 195.25)  (7.79%, 40.62%)
GRAPHSTOIHT  0.151 0.356 0.194  (0.603, 0.570)  (0.602, 0.570)  (174.65, 181.40)  (7.84%, 22.06%)
DA-IHT 0.507 0.744 0566 (0.697, 0.666)  (0.697, 0.666)  (155.65, 162.85)  (4.35%, 39.50%)
GRAPHDA 0.869 0.006 0.880 (0.749, 0.739) (0.749, 0.739) (133.45, 136.20)  (2.56%, 32.12%)
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Online Graph Sparse Linear Regression
FI score as a function of samples seen (2nd to 4th row) on seven handwritten digits.
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M(M)— A toy example

M(M) := {wlsupp(w) € M} where M := {S|G(S,E’) is connected subgraph up to size 3.}

wi w3

At each time t, we need G(supp(w;),E’) is connected and |supp(w:)| < 3.
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Projection explanation

How can we make sure w; is in M(M) ? Projection!

The projection onto M (M) is defined as

P(w, M(M)) = arg min ||w — x||°.
xeM(M)

!
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Online Mirror Descent

Algorithm 2 OMD(Online Mirror Descent [Hazan et al., 2016])
1. Input: 7, R(x), Br(x,y),K
2: let y; be such that VR(y;1) = 0 and x; = arg min ¢ Br(x, y1)
3: fort =0,1,2,... do

4: update y; by rule VR(ye+1) = VR(y:) — nVfe(xe)

5

6

projection step X1 = arg mingx Br(X, y¢41)
. end for

R(x) is a Legendre Function (1. strictly convex; 2. has continuous first order
derivatives; and 3. lim,_ g\ [[VR(x) = +00).

Br(x,y) = R(x) = R(y) — (x =y, VF(y))

Online Mirror Descent is a generalized version of Online PGD.

When R(x) = 1(x, x), OMD is exactly the same as Online PGD.
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Regret (Continue)

Open problems: Provided the GRAPHDA algorithm,

e Can we obtain a non-regret bound under some condition ?

e What are the conditions ?
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